
Lecture Notes
CS262 - Logic and Verification

Intro

1. Arithmetic term is either a variable X,Y... or sum(∨),
product(∧) of other arithmetic terms. e.g. (X ∧ Y ) ∨ Z.

2. Syntax is the formal specification of a language, where
no meaning is associated with symbols.

3. Semantics is the meaning of formal symbols in context.

4. Proposition = Atomic formula = Statement is an
expression that has a truth value: e.g. ”it’s sunny today”.
Propositional variable x becomes a proposition once
assigned a truth value (x = T ).

5. Propositional formula (PF) comprises propositional
variables and logical connectives. Its truth value depends
on the assignment of those variables. Formulas represent-
ing same truth function are logically equivalent.

6. Parse tree for PFs can be inductively constructed with
atomic formulas and connectives as nodes alike computa-
tion graphs. Subtrees are subformulas.
Recursively define for formulas X,Y :
- deg(A) = 0 if A is atomic formula
- deg(¬X) = 1+deg(X)
- deg(X ◦ Y ) = 1+deg(X)+deg(Y )

7. Theorem: degree of a formula equals the number of inner
nodes of the parse tree. Proof by induction

8. Truth Table specifies truth function between 2n combi-
nations of n variables to an output f : {T, F}n → {T, F}.

9. Nullary/unary/binary connective ⊤/¬/∧ take 0/1/2 args.

10.Valuation v is mapping of PFs → {T, F} s.t. v(⊤) =
T, v(⊥) = F, v(¬X) = ¬v(X) and v(X◦Y ) = v(X)◦v(Y ).

11. Formula evaluating to T under all/some/none valuations
is called tautology/satisfiable/contradicion.

12. Formula X is a consequence of set S of formulas S ⊨ X
if ∀v(si∈S)=T → v(X)=T , or if all propositions in S are
sufficient for X to be true ({p, p→q} ⊨ q). X is tautology
iff ∅ ⊨ X, usually written as ⊨ X (unconditionally true).

13. Set of connectives is complete if can represent all 22
n

truth func {T, F}n → {T, F} using only such connectives.

14. Disjunctive/Conjunctive normal form (DNF/CNF) is a
disj/conj of conj/disj of literals (var, ¬var, ⊤, ⊥).

15.Theorem: every boolean function has a DNF and CNF.

Normal form algorithms

1. Let X1, ..Xn be sequence of propositional formulas.
Generalised disjunction is clause [X1, ..Xn] := X1∨..Xn.
Gen. conjunction is dual clause ⟨X1, ..Xn⟩ := X1∧ ..Xn.

2. Neutral elements of (dis/con)junction are valuations:
disj : v([]) = v(⊥) = F and conj : v(⟨⟩) = v(⊤) = T .

3. Group PFs of form (X◦Y ) and ¬(X◦Y ) with ◦ ∈ {∧,∨,→
,←, ↑, ↓,↛,↚} into conjunctive and disj. categories:

where ∀v : v(α) = v(α1) ∧ v(α2) and v(β) = v(β1) ∨ v(β2)

4. Expansion: given PFX start ⟨[X]⟩ if CNF, [⟨X⟩] if DNF.
Given current expansion D, select non-literal term N from
some Di ∈ D. α/β-expansion if N is α/β formula. Re-
place upper values of N with bottom values as follows:

CNF:
¬⊤
⊥
¬⊥
⊤
¬¬Z
Z

β
β1
β2

α

α1|α2
DNF:

¬⊤
⊥
¬⊥
⊤
¬¬Z
Z

β

β1|β2
α
α1
α2

Proposition 1: this algorithm continuously produces a
sequence of logically equivalent formulas.

5. Theorem (Konig’s lemma): finitely branching but in-
finite tree must have an infinite branch. Consider rooted
tree, branch is sequence of nodes starting at root itera-
tively descending towards some child until none present
(finitely branching). Tree/branch is finite if has finite
num nodes, otherwise infinite.

6. Define rank of prop formula as r([X1, ..Xn]) =
∑n

i=1 r(Xi)
Recursion anchor r(p) = r(¬p) = 0 for var p, r(⊤) =
r(⊥) = 0; r(¬⊤) = r(¬⊥) = 1.
Recursive step r(¬¬Z) = r(Z) + 1; r(α) = r(α1) +
r(α2) + 1; r(β) = r(β1) + r(β2) + 1.

7. Proposition 2: the algorithm terminates, regardless of
which choices are made during the algorithm. Proof : as-
sign curr conj of disj ⟨D1, ..Dn⟩ a seq of n balls by placing
a ball labelled r(Di) for each disj Di into a box. At each
step replace a ball by 2 if α-expand else 1, with lower rank.
This game must end, so algorithm must terminate .
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Proof Systems (PS)

1. Semantic tableau for DNF andResolution for CNF are
refutation systems taking X and aiming to arrive at con-
tradiction beginning at ¬X. Remember to negate!

2. Both extend to first order logic (quantifiers), can be gen-
eralized to establish propositional consequences S ⊨ X,
not just tautologies ⊢ X and the rule application is non-
deterministic in both.

3. Theorem tableau/resolution PS is sound (⊢t/r X iff ⊨X)

4. Theorem: tableau/resolution PS is complete (tautology
⊨X implies that strict tableau/resolution PS will termi-
nate with a proof for it).

5. Theorem: For any set S of propositional formulas and
any formula X, write S ⊨ X iff S ⊢t X, S ⊢r X or S ⊢d X

Semantic Tableau (DNF(∨))
1. Semantic tableau is a tree-like disjunction of conjunc-

tive branches. Builds out every branch all of which need to
reach contradiction, write ⊢t X if X has a tableau proof.

2. Tableau branch is closed if both formulas X,¬X or ⊥
occur in the branch. If vars x,¬x appear, the branch is
atomically closed. Tableau is (atomically) closed (proof
succeeded) if all branches are (atomically) closed.

3. Tableau is Strict if no formula had an expansion rule ap-
plied to it twice on same branch. Represent tree as disj. of
conj. Strictness removes expanded formula from the list,
so identical to DNF expansion.

4. S-introduction rule: in S ⊢t X any formula Y ∈ S can
be added to end of any closed ¬X tableau branch.

Propositional Resolution (CNF(∧))
1. Resolution for CNF is just like Tableau, but only needs

one contradiction. Identical to CNF expansion if strict.
Write ⊢r X if X has a resolution proof.

2. Strict if every disjunction has at most 1 resolution expan-
sion rule applied to it: no formula reuse, remove instead.

3. Resolution rule: for disj. D1, D2 s.t. X ∈D1,¬X ∈D2:
let D = D1\{X} ∪ D2\{¬X} (remove and combine). If
⊥∈D, delete all ⊥’s occurrences, callD trivial resolvent

Resolvent D is the result of resolving D1 and D2 on
formulaX. IfX is atomic, then it’s an atomic application
of resolution rule.

4. S-introduction rule: in S ⊢r X for any formula Y ∈ S,
can add the line [Y ] to closed ¬X resolution expansion.

Natural Deduction

1. Natural Deduction has nested subordinate proofs
(=’lemmas’) which draw conclusions from assumptions
which are to be eventually exhausted.

2. Implication rule: If can derive Y from assumption X,
then discharge X, conclude X → Y holds unconditionally.

3. Rule is derived if it doesn’t strengthen proof system.
Derived Rules

Implication Rules

4. Primary connective rules are: Introduction and Elimina-
tion. Last two negation rules determine if it’s a contra-
diction proof (can start with ¬X and aim to arrive at
contradiction ⊥). Second constant rule has no premises.
Order of premises doesn’t matter, but all must be active.

5. S-introduction rule for natural deduction: at any stage,
any premise Si ∈ S may be used as a line. Write
S ⊢d X if ∃ natural deduction derivation of X to S. E.g.
{p→ q, q → r} ⊢d p→ r. Show p→ q → r.

SATisfiability

1. SAT Problem: F Given a propositional formula in CNF,
is there a satisfying assignment for it? NP-complete. Can
solve k-SAT problem of L literals in 2k · L.

2. Positive/negative literal is a variable / negated variable.
Clause is disj of literals. k-SAT problem takes k-CNF
formulas, where every clause has at most k literals.
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3. Theorem: given SAT instance F ∃ polynomial time al-
gorithm that produces G(F ) 3-CNF s.t. F is satisfiable iff
G(F ) is satisfiable. Efficient 3-SAT ⇒ efficient SAT.
Proof : consider clause containing literals [X,Y ], replace
X∨Y by new variable Z (1 literal fewer), express X∨Y ≡
Z by 3-CNF F (X,Y, Z) : [...]. Conjunctively connect it to
current CNF: F (X,Y, Z) ∧ CNF. Repeat if |clause| > 3.□

4. Corollary: efficient SAT ⇒ efficient k-Colouring.
Proof : ∀v ∈ V and each colour k introduce variable
xv,k = 1 if v receives k else 0. Add constraint that ∀v ∈ V
receives exactly one colour, and ∀(a, b) ∈ E : ka ̸= kb (edge
end vertices have diff colours). Num variables = |V | × k,
so runs in polynomial of |V |, |E|.

5. Can solve 2-SAT in linear time by exhaustively applying
resolution rule. Each resolution produces clause of size
≤ 2, so at most 1+ 2n+4

(
n
2

)
= 2n2 +1 clauses can occur

where n is num of variables. If empty clause [] occurs,
then non-satisfiable, else satisfiable.

6. Directed graph D = D(F ) can capture u ∨ v ≡ ¬u →
v ≡ ¬v → u implication. Write x⇝ y if ∃ a directed path
from x to y in D(F ) of SAT instance F .
Vertex set V (D) = V ∪ V (all vars V = V (F ), their
negation). Have 2n vertices where n = |V |.
Edge set E(D)={(¬u, v), (¬v, u) : [u∨v] ∈ F}∪{(¬u, u) :
[u] ∈ F} - 2-clauses lead to two directed edges, a unit
clause leads to one. Have ≤ 2m edges, where m = |F |.

7. Lemma: Given graph G(F ) = (V,E), F is not satisfiable
iff ∃x ∈ V s.t. x⇝ ¬x⇝ x (strongly connected).
Proof : let F ′ be CNF obtained from F by exhaustively
applying resolution. Resolvent [u, v] of [x, y] and [¬x, v] (x
and ¬x cancel out) would add edges ¬u→ v and ¬v → u,
but ¬u→ x→ v and ¬v → ¬x→ u already present, so re-
lation ⇝ isn’t altered. Then the following are equivalent:
F not satisfiable ⇔ [] ∈ F ′ (by definition of resolution) ⇔
[x], [¬x] ∈ F ′ (cancels out to []) ⇔ x → ¬x → x ∈ D(F ′)
(edge set of disj. from 6) ⇔ x⇝ ¬x⇝ x ∈ D(F ).

8. Subset G ⊆ F of 3-CNF over n vars is independent if no
clauses share variables, e.g. ⟨[a, b], [¬c, d]⟩. G is maximal
if independency breaks upon adding any new clause.

9. Lemma: given maximal set G of independent 3-clauses
in 3-CNF F have: |G| ≤ n÷ 3. For any truth assignment
α in G, formula F [α] obtained from assigning all vars in
α to F and removing clauses with true literals and false
literals from clauses, is 2-CNF. So, there are 7|G| ≤ 7n/3

satisfying assignments for G. PROOF TBC

10.Theorem: satisfiability of 3-CNF formula can be decided
in O(7n/3poly(n)) = O(1.913n) time.

SAT Solving

1. Horn clause contains ≤ 1 positive literal (non-negated).
Horn CNF has only Horn clauses [¬x,¬y, a]≡(x∧y)→ a.

2. Theorem: the following algorithm decides satisfiability
of Horn CNF in linear time.

Horn CNF satisfiability O(n)

F ← Horn CNF # a :- x,y. means [¬x,¬y, a]≡(x ∧ y)→ a
while ([] /∈ F) { # empty clause [] isn’t satisfiable
# ⟨⟩: any assignment, size ≥ 2: set all to false.
if F=⟨⟩ or every F-clause has size≥2: return "Yes"
pick clause [u] ∈ F of size=1 # set clause to true
remove clauses with u from F and ¬u from clauses}

3. Complete methods find satisfying assignment of proof
that none exists (systematic solvers). Incomplete meth-
ods don’t guarantee results, use stochastic local search.

4. F |l ≡ remove clauses with l, and ¬l from clauses, l := T .

Näıve Backtracking for SAT

def Back(F) → satisfying assignment or ⊥:
if F = ⟨⟩: return ∅
elif [] ∈ F: return ⊥
else: # try assigning a literal to True or False
Let l be literal in F; L := Back(F|l)
if L ̸= ⊥: return L ∪ {l}; # try l := ⊤
else: L := Back(F|¬l)

if L ̸= ⊥: return L ∪ {¬l}; # if fail, l := ⊥
else: return ⊥

5. Unit clauses [l] force unit clause propagation: l := T .
Also have pure literals, or l s.t. ¬l doesn’t appear in cur-
rent formula, so can set l := T . Optimise using:

UnitPure(F)

def UnitPure(F) → partial assignment:
L := ∅; F’ := F
while F’ has unit-clause [l] or pure-literal l:
L := L ∪ {l} # assign l to true
F’ := F’|l # remove l-clauses and ¬l from clauses

Davis-Putnam-Logemann-Loveland

def DPLL(G) → satisfying assignment or ⊥:
U := UnitPure(G); F := G | U # optimisation
if F = ⟨⟩: return ∅; elif [] ∈ F: return ⊥
else: # try assigning a literal to True or False
Let l be literal in F; L := DPLL(F|l)
if L ̸= ⊥: return G ∪ L ∪ {l}; # try l := ⊤
else: L := DPLL(F|¬l)

if L ̸= ⊥: return G ∪ L ∪ {¬l}; # if fail, l:=⊥
else: return ⊥

Usually optimised further using heristics: ”Which literal
l to choose in next recursion step?”
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6. Static heuristics: linear ordering of variables fixed be-
fore start, fast to compute.
Dynamic heuristics: order based on current formula F ,
typically from # occurrences of literals in F ’s clauses. e.g.
• Dynamic Largest Individual Sum (DLIS): choose
literal which occurs most frequently.
•Max Occurrence in Clauses of Min Size (MOMS):
literal occurring most frequently in clauses of min size.

7. Clauses only matter during search when going from:
2 non-false literals to 1 (unit clause propagation), or
1 non-false literal to 0 (conflict).

8. So, choose 2 watched literals in each clause. Invariant:
watched literals are non-false (either true or not assigned)
if clause is not satisfied.

9. Each literal l has a watch list W (l) of clauses watching l.
When l is falsified, visit every clause C ∈W (l):
• some literal is true , continue (don’t track satisfaction
of clauses explicitly).
• all literals false , return (backtrack).
• all but 1 l′ ∈ C are false , assign l′ := true (unit clause
propagation), continue.
• else , add C to watch list of one of its remaining unas-
signed literals, remove from watch list W (l).

10. Each disjunctive clause [a1, ..., an] wants to be satisfied - a
single ai set to True is enough. But watching all n literals
is slow, choose 2 non-false (true/unassigned) watch lit-
erals per clause. Consider clause A = [x, y, z]; watch(A)
= {x, y}. Now, if x gets assigned False somewhere else:
• try to watch z
z is True/unassigned : watch(A) := {y, z}; continue
z is False : can’t watch it;
• check on y:
y is True ; watch(A) stays {x, y}; continue
y is unassigned ; A = [F, y, F ] is now a unit clause;

unit propagate y := True; continue
y is False , then A is False; backtrack

11.Benefits of watched literals: no updates on watch lists
upon backtracking, fewer clauses inspected when literal is
set; once a literal is assigned false, it becomes unwatched
in many clauses, so faster subsequent reassignment.

12. Backtracking doesn’t need watch lists to update as it only
un-assigns values, never falsifies a literal to maintain the
invariant; use lazy data structures.

13.Clause learning: when a conflict is found, identify a
minimal subset of the current assignment (conflict clause)
that caused it, and add it as a new clause to prevent the
solver from repeating the same mistake in other branches.

14.Clause learning example: assume reason for conflict
in branch ⟨x,¬y, z⟩ is ⟨x,¬y⟩, so add ¬(x,¬y) = [¬x, y]
clause, preventing other branches from this conflict.

15. Implication Graph G is digraph associated with stages
of the algorithm. Nodes are decision literals l, or literals
set to true. For any clause C = [l1, ..lk, l], where ¬l1, ..¬lk
are nodes, add new node l and edges from ¬i → l corre-
sponding to C for all i = 1, ..k.

16.Conflict literal l if both l and ¬l appear as nodes in the
implication graph. Conflict graph G′ ⊆ G contains:

•Exactly one conflict literal l (i.e., both l and ¬l as nodes),
•Only nodes that have a path to l or ¬l in G,
• For each node in G′, only the incoming edges that come
from a single clause (implication responsible for it).

17. Edge cut in G′ with all decision literals on reason side
R, and the conflict literals on the conflict side C. All
edges across the cut are R⇝ C.

18.Conflict clause takes disjunction of all literals l′ between
edges l → l′ with l ∈ R, l′ ∈ C. Use learning schemes
to select one conflict clause to add.

19. Lemma: Any conflict clause can be inferred by resolution
rule from existing clauses. PROOF TBC.
Consequently, adding conflict clauses doesn’t change sat-
isfiability of input formula.

20.Conflict-driven clause learning (CDCL) algorithm:

1.Select variable and assign true/false
2.Apply unit clause propagation
3.Build implication graph
4.If conflict:
• derive & add corresponding conflict clause to formula.
• non-chronologically backtrack to decision level where
first-assigned variable involved in conflict was assigned.

5.Repeat from step 1 until all variable values are assigned.

21.Monte Carlo method: start with random truth assign-
ment, while ∃ unsatisfying clauses, pick any one, flip a
randomly chosen literal in it. Give up after ≤ N trials.
Only works on satisfiable formulas, can’t prove otherwise.

22.Theorem: for satisfiable 3-SAT formula with n variables,
this algorithm will succeed with probability Ω((3/4)n/n)
after at most ≤ N rounds. So, repeat Kn(4/3)n times.
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First-order Logic

1. Propositional logic has limited expressive power (only
true/false possible), can’t express things like: every natu-
ral number has a successor; ∀x ∃ x ≤ prime ≤ 2x etc.

2. First-order language comprises:
Propositional connectives (∧,∨,→, etc),
Constants (⊤,⊥),
Quantifiers ∀,∃,
Variables x, y, z,
Relation symbols: >,=, p(x) (is x prime) etc.,
Function symbols: succ(x) (successor of x), x+ y etc.
Constant symbols: 1, 2, 3 . . . .

3. First-order language L(R,F,C) has finite/countable
sets: R of relation/predicate symbols, F of function sym-
bols each with some number of arguments, and C of con-
stant symbols (function symbols with 0 arguments).

4. Family of terms of L(R,F,C) is the smallest set s.t.:
1. every variable is a term,
2. ∀c ∈ C is a term,
3. ∀f ∈ F with n args t1, .., tn; - f(t1, ..tn) is also a term.
Terms allow us to iteratively use any constant and func-
tion symbols, but no relation symbols.

5. Atomic formula of L(R,F,C) is a string r(t1, ..tn) where
r ∈ R taking n arguments t1, ..tn. E.g. ⊤,⊥ are atomic.

6. Family of formulas of L(R,F,C) is smallest set s.t.:
1. every atomic formula is a formula of L(R,F,C),
2. if A is formula, then so is ¬A,
3. if A,B formulas then A ◦B is also a formula for any
binary connective ◦,

4. if A is a formula and x is a variable, then (∀xA) and
(∃xA) are also formulas.

7. Free-variable occurrences in a formula are those not
bound by quantifiers:
1. All variable occurrences in atomic formulas are free.
2. In ¬A, same free variables as in A.
3. In A ◦B (e.g., ∧, ∨, →), free vars are those in A, B.
4. In ∀xA or ∃xA, all free variables in A except for x.

It’s about occurrences, not vars: in Q(x)→ ∀xR(x):
x is both free in Q(x) and bound in ∀xR(x).

8. Sentence or closed formula of L(R,F,C) is formula with
no free-variable occurences.

9. Model M = (D, I) for first-order language L(R,F,C):
where set D is a nonempty domain of M , and I is the
interpretation (mapping) that associates:
1. some member c′ ∈ D to ∀c ∈ C,
2. some n-any func f ′ : Dn → D to ∀f ∈ F with n args,
3. some n-ary relation R′ ⊆ Dn to ∀r ∈ R with n args.

10.Assignment in model M = (D, I) is mapping A from set
of vars to set D. Write xA for image of x under A.

11.Values of terms: for modelM = (D, I), lang L(R,F,C),
assignment A, associate value tI,A to each lang term t s.t.:
1. for c ∈ C, have cI,A = cI ,
2. for x ∈ X, have xI,A = xA,
3. for f ∈ F , have (f(t1, ..tn))

I,A = f I(tI,A1 , ...tI,An ).
for constants c, vars x and function symbols f with n args.

12. Associate truth value ΦI,A to each formula of L(R,F,C):
1. R(t1, ..tn)

I,A=T iff (tI,A1 , ..tI,An ) ∈ R′; ⊤I,A=T,⊥I,A=F
2. [¬X]I,A = ¬[XI,A]
3. [X ◦ Y ]I,A = XI,A ◦ Y I,A

4. [∀xΦ]I,A=T and [∃xΦ]I,A=T iff ΦI,A′
= T for every A′

differing from A in at most the value assigned to x.
for model M = (D, I) and assignment A.

13. 1. Formula Φ of lang L(R,F,C) is true in the model
M = (D, I) if ΦI,A = T for all assignments A.

2. Φ is valid if Φ = T in all models for the language.
3. Set S of formulas is satisfiable in M if there is an
assignment A s.t. ∀Φ ∈ S : ΦI,A = T .

Can turn arbitrary formulas into sentences by universally
quantifying away free variables.

First-order proof systems

1. For quantified formulas, γ-formulas act universally (∀) and
δ-formulas act existentially (∃). Below, Φ{x/t} denotes
formula obtained from Φ by substituting free occurrences
of variable x by term t. Useful to expand δ before γ, as δ
introduces variables, but γ chooses from existing ones.

γ γ(t) δ δ(t)

∀xΦ Φ{x/t} ∃Φ Φ{x/t}
¬∃Φ ¬Φ{x/t} ¬∀Φ ¬Φ{x/t}

2. Given L(R,F,C) let par be countable set of constant sym-
bols disjoint from C. Its elements are parameters, write
Lpar ≡ L(R,F,C ∪ par).

3. In δ-γ-expansion, let γ take some closed term t of Lpar

(closed=no variables), and let δ-expansion introduce new
parameter p that has not been used prior in the proof.

4. Strictness: if have γ on branch, should be allowed to add
γ(t1) and later γ(t2) where t1, t2 are different closed terms.

5. First-order Tableau γ
γ(t) ,

δ
δ(p) . Still non-deterministic,

unlike in propositional, can work forever never reaching
closed tableau even if one exists.

6. First-order Resolution γ
γ(t) ,

δ
δ(p) . Else same as tableau.

7. First-order Natural deduction: γE γ
γ(t) ,

δ
δ(p) .
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Program verification P ⊢ ϕ

1. P is a program and ϕ is a property about that program
established by deductive proof. Not decidable but partial
automation is possible. Detects functional bugs in small
programs performing identifiable tasks.

2. Aims: define small programming language, describe logi-
cal framework which allows logical properties to be derived
from the program by deductive proof. Then for program
P and important properly ϕ, set out a proof to show that
P terminates establishing ϕ. The following are equivalent:

x=0; i=1; while (i≤n) {x=x+arr[i]; i=i+1}

⊢ x =

n∑
i=1

arr[i]

3. Syntax domains integer(E), boolean(B), commands(C):
1. Assignment statement x = E.
2. Composition (sequential): C1;C2: run C1 then C2.
3. Conditional: if B then {C1} else {C2}.
4. Loop: while B{C}.

4. Postcondition: property that must hold upon program
termination. First order logic formula referring to pro-
gram variables, expressing desired conditions formally.

5. Precondition: property we want to program variables to
satisfy before the program starts. Also a first order logic
formula. Can be ⊤ (no condition in precondition).

6. Hoare triples: (|Pre|) Prog (|Post|) logical statement:
1. Pre: precondition that we can assume holds
2. Prog: program itself
3. Post: postcondition we wish to establish.
If the Hoare triple is valid, then any execution of Prog
starting in a state where Pre holds will end in a state
where Post holds

7. When need to refer to original values, often use 0 sub-
script e.g. x0, y0; can swap values of x, y with:
(|x = x0∧y = y0|) t = x; x = y; y = t; (|x = y0∧y = x0|)

8. Pre, Post form program specification, but require proof.

9. Weakest precondition wp(P, Post) for program P to es-
tablish postcondition Post is precondition implied by any
other possible precondition, guaranteeing that Post holds.

e.g. wp(x = x+ 1, x > 3) = x > 2

min requirement for P to successfully reach goal Post.

10. For assignments, formula will be true afterwards exactly
when it holds beforehand with the new value:

wp(x = E,Post) = Post[x/E]

where Post[x/E] is the condition obtained from Post by
replacing x by E (substitution).

11. Weakest precondition for composition:

wp(P ;Q,Post) = wp(P,wp(Q,Post))

12. Weakest precondition for conditional:

wp(if B then {C1} else {C2}, Post) =

= (B → wp(C1, Post)) ∧ (¬B → wp(C2, Post))

= (B ∧ wp(C1, Post)) ∨ (¬B ∧ wp(C2, Post))

13.

Any program is a sequence of instructions
Prog = C1;C2; ..;Cn, lay out proof for
Prog as shown on the right. Validity of each
of the Hoare triples (|ϕi−1|)Ci(|ϕi|) must be
inferred from some rule, allowing us to de-
duce (|ϕ0|)Prog(|ϕn|).

(|ϕ0|)
C1

((ϕ1|)
. . .

(|ϕn−1|)
Cn

(|ϕn|)

14.Assignment rule allows the Pre to just be Post with
syntactic substitution: (|x+1 > x0|) x = x+1 (|x > x0|),
but can only deduce a triple if Pre is exactly the WP.

(|Post[x/E]|)x = E(|Post|)
Assignment

15. Can strengthen Pre: e.g. x = 5→ x+ 1 > 1, so can do:
(|x = 5|) x = x+ 1 (|x > 1|)→ (|x+ 1 > 1|) x = x+1 (|x > 1|)
and weaken Post: e.g. x > 1→ x ̸= 0, so can do:
(|x+1 > 1|) x = x+1 (|x > 1|)→ (|x+1 > 1|) x = x+1 (|x ̸= 0|)

16. Implied rule: combines strengthening and weakening
and means that ”upper” formula implies the ”lower” one.

Pre→ P (|P |)Prog(|Q|) Q→ Post

(|Pre|)Prog(|Post|)
Implied

17.Composition rule:

(|Pre|)Prog1(|Mid|) (|Mid|)Prog2(|Post|)
(|Pre|)Prog1;Prog2(|Post|)

Composition

18. When constructing the proof, we ”push” Post upwards to
see what is needed for command to achieve desired result.

19.Conditional rule: if B {C1} else {C2}. Push Post
backwards through respective code, in other words, calcu-
late wp(C1, Post) and wp(C2, Post).

(|Pre ∧B|)C1(|Post|) (|Pre ∧ ¬B|)C2(|Post|)
(|Pre|) if B{C1} else {C2}(|Post|)

Conditional

20. Loop rule: while B {C} where L is loop invariant, holds
before and after each iteration (even last one). Need to
find a good loop invariant.

(|B ∧ L|)C(|L|)
(|L|) while B{C}(|¬B ∧ L|)

Loop
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Other notation & Examples

1. Equational reasoning: Laws of Boolean algebra can be
used to simplify complex formulas.

2. CNF expansion of ¬(p ∧ ¬⊥) ∨ ¬(⊤ ↑ q):
⟨[¬(p ∧ ¬⊥) ∨ ¬(⊤ ↑ q)]⟩ ≡ conj ”⟨⟩” of disj ”[]”
⟨[¬(p ∧ ¬⊥)], [¬(⊤ ↑ q)]⟩ ≡ ”∨” is disj, so ”β1, β2”
⟨[¬p,¬¬⊥,⊤, q]⟩ ≡
⟨[¬p,⊥, q]⟩ ≡
⟨[¬p, q]⟩

3. DNF exp. of (x→ y)→ (y ↓ ¬z) ≡
[⟨(x→ y)→ (y ↓ ¬z)⟩] ≡ disj ”[]” of conj ”⟨⟩”
[⟨¬(x→ y) ∨ (y ↓ ¬z)⟩] ≡ expand ”→”
[⟨¬(x→ y)⟩, ⟨(y ↓ ¬z)⟩] ≡ ”∨” is disj, so ”β1, β2”
[⟨¬(¬x ∨ y)⟩, ⟨(¬y ∧ ¬¬z)⟩] ≡ expand inner ”→” and ”↓”
[⟨(¬¬x ∧ ¬y)⟩, ⟨(¬y ∧ ¬¬z)⟩] ≡ distribute ”¬”
[⟨x ∧ ¬y⟩, ⟨¬y ∧ z⟩] ≡ cancel ”¬¬”
[⟨x,¬y⟩, ⟨¬y, z⟩] ∧ is conj, so ”α1, α2”

4. Resolution S-introduction {p→ q, q → r} ⊨ ¬(¬r∧p):
Use (introduce) LHS formulas when need to resolve
0. [¬¬(¬r ∧ p)] negation of main formula
1. [¬r ∧ p] cancel out ¬¬
2. [¬r] from 1
3. [p] from 1
4. [p→ q] s-introduciton from left side of statement
5. [¬p, q] expand ”→” from 4
6. [q] resolution on p from 3 and ¬p from 5
7. [q → r] s-introduction
8. [¬q, r] expand ”→” from 7
9. [r] resolution on q from 6 and ¬q from 8
10. []⊥ resolution on ¬r from 2 and r from 9.

5.

Prolog

1. Unknown variables must be capitalised or start with ” ”.
Comma ”,” is same as ∧, semicolon ”;” is same as ∨. :- is
reverse implication← or ”if” e.g. a(X) :-b(X) means that
a is true if b is true.

Basic Prolog Syntax

indian(curry). % assert single variable fact
likes(john, sushi). % asserts a fact
?- likes(john, sushi). % query/question a fact
likes(john, X) :- likes(mary, X) % bind facts (←)

Lists

[a, b, c] % a list
[a, b, [c, d]] % list in lists
[Head | Tail] % access first element and the rest
[H1 | [H2|Tail]] = [H1, H2|Tail] % iterate list
member (E1, List) % test membership
nth1 (Idx, List, E1) % get nth element
_ % placeholder for arbitrary expression
! % backtracking cut operator

2. Verification Conditional proof:
(|⊤|) P (|m ≥ x ∧m ≥ y ∧m ≥ z ∧ (m = x ∨m = y ∨m = z)|)

3.
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Propositional Logic Proof Systems

1. Tableau Proof : DNF, OR: branch; AND: add line.
start-with:- ((x→ y) ∧ (y → z))→ ¬(¬z ∧ x)

add-negation: ¬(((x→ y) ∧ (y → z))→ ¬(¬z ∧ x))

LHS: (x→ y) ∧ (y → z)

RHS: ¬¬(¬z ∧ x)

¬z ∧ x

¬z

x

x→ y

y → z

¬x⊥ y

¬y⊥ z⊥

2. Resolution Proof : CNF; OR: add ”,”; AND: add line.
start with: ((x→ y) ∧ (y → z))→ ¬(¬z ∧ x)
0) [¬(((x→ y) ∧ (y → z))→ ¬(¬z ∧ x))] negate, add ”[]”
1) [(x→ y) ∧ (y → z)] LHS
2) [¬z ∧ x] RHS
3) [x→ y] by 1
4) [y → z] by 1
5) [¬z] by 2
6) [x] by 2
7) [y] resolution on 3,6
8) [z] resolution on 4, 7
9) []⊥ resolution on 5,8

3. Natural Deduction Proof :
Imp = implication (→); MP = Modus-Ponens rule

p→ (q → r)

q

p
q → r
r □
r

p→ r

q → (p→ r)

(p→ (q → r))→ (q → (p→ r))

Imp LHS1

Imp LHS2

Imp LHS3
MP
MP
Imp RHS3
Imp RHS2
Imp RHS1

Formula to prove

First-order Proof Systems

1. First Order Logic Tableau Proof :

0. Φ := ∀x (P (x) ∨Q(x))→ (∃xP (x) ∨ ∀xQ(x))

1. ¬(∀x (P (x) ∨Q(x))→ (∃xP (x) ∨ ∀xQ(x)))

2. ∀x(P (x) ∨Q(x))

3. ¬(∃xP (x) ∨ ∀xQ(x))

4. ¬∃xP (x)

5. ¬∀xQ(x)

6. ¬Q(r)

7. ¬P (r)

8. P (r) ∨Q(r)

9. P (r)⊥ 10. Q(r)⊥
1) add negation 7) γ-expand 4, {x/r}
2,3) α-expand 1 8) γ-expand 2, {x/r}
4,5) α-expand 2 9,10) β-expand 8
6) δ-expand 5, {x/r}

2. First Order Logic Resolution Proof :
0) Φ := ∀x(P (x) ∨Q(x))→ (∃xP (x) ∨ ∀xQ(x))
1) [¬(∀x(P (x) ∨Q(x))→ (∃xP (x) ∨ ∀xQ(x)))] negate
2) [∀x(P (x) ∨Q(x))] α-expand 1
3) [¬(∃P (x) ∨ ∀xQ(x))] α-expand 1
4) [¬∃P (x)] α-expand 3
5) [¬∀xQ(x)] α-expand 3
6) [¬Q(r)] δ-expand 5, {x/r}
7) [P (r) ∨Q(r)] γ-expand 2, {x/r}
8) [P (r), Q(r)] β-expand 7
9) [P (r)] resolve 6,8
10) [¬P (r)] γ-expand 4, {x/r}
11) []⊥ resolve 9,10.

3. First Order Logic Natural Deduction Proof :

∀x(P (x)→ Q(x))

∀xP (x)

¬∀xQ(x)
¬Q(r)
P (r)

P (r)→ Q(r)
Q(r)
⊥

∀xQ(x)

∀xP (x)→ ∀xQ(x)

Φ := ∀x(P (x)→ Q(x))→ (∀xP (x)→ ∀xQ(x))

FTSOC
δ-exp {x/r}
γ-exp {x/r}
γ-exp {x/r}
MP
Neg rule
Neg rule
Imp rule
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Logic

General Logic

1. ¬ negation (NOT)

2. ∧ conjunction (AND)

3. ∨ disjunction (OR)

4. ⊕ exclusive or (XOR)

5. ↑ (NAND)

6. ↓ (NOR)

7. ∈ membership

8. → implication

9. ≡ or ↔ equivalence

10. ⊤ ”top” always returns T

11. ⊥ ”bottom” always returns F

12. ∃ existential quantifier (”exists”)

13. ∀ universal quantifier (”forall”)

——————————————————————————————————————————

A→ B: A is sufficient for B, B is necessary for A

A↔ B: A/B is necessary and sufficient for B/A
——————————————————————————————————————————
Theorems & Rules

1. A→ B ≡ ¬B → ¬A ≡ ¬A ∨B
2. A↔ B ≡ (A ∧B) ∨ (¬A ∧ ¬B)
3. A ∧B ≡ ¬(¬A ∨ ¬B)
4. A ∨B ≡ ¬(¬A ∧ ¬B)
——————————————————————————————————————————

Property Statement
Associativity (x ∨ y) ∨ z ≡ x ∨ (y ∨ z)

(x ∧ y) ∧ z ≡ x ∧ (y ∧ z)
Commutativity x ∨ y ≡ y ∨ x

x ∧ y ≡ y ∧ x
Identity Laws x ∨ F ≡ x

x ∧ T ≡ x
Idempotence x ∨ x ≡ x

x ∧ x ≡ x
De Morgan’s ¬(x ∨ y) ≡ ¬x ∧ ¬y

Laws ¬(x ∧ y) ≡ ¬x ∨ ¬y
Excluded x ∨ ¬x ≡ T
Middle x ∧ ¬x ≡ F

Doub. Neg. ¬¬x ≡ x
Annihilation x ∧ F ≡ F

x ∨ T ≡ T
Absorption x ∨ (x ∧ y) ≡ x

x ∧ (x ∨ y) ≡ x
Distributivity x∨(y∧z) ≡ (x∨y)∧(x∨z)

x∧(y∨z) ≡ (x∧y)∨(x∧z)

Predicates
——————————————————————————————————————————
1. Predicate is a function producing truth value.

2. Proposition is a thing with attached truth value.

3. Atomic proposition: F, T, [1+1=2].
4. Compound: atomic prop.’s connected by operators.

5. Totology is a composition that is always true
6. ∃! - there exists exactly 1
——————————————————————————————————————————
Express finite set predicates using (∧) and (∨)
1. ∀x ∈ S : P (x) ≡ P (a1) ∧ ... ∧ P (an)
2. ∃x ∈ S : P (x) ≡ P (a1) ∨ ... ∨ P (an)

De Morgan’s laws on predicates
3. ¬∀x : P (x) ≡ ∃x : ¬P (x)
4. ¬∃x : P (x) ≡ ∀x : ¬P (x)

When Q contains x as a free variable
5. (∀x : P (x)) ∧ (∃x : Q(x)) ≡ ∀x : (P (x) ∧Q(x))

6. (∃x : P (x)) ∨ (∃x : Q(x)) ≡ ∃x : (P (x) ∨Q(x))

When Q doesn’t contain x as a free variable
7. (∀x : P (x)) ∧Q ≡ ∀x : (P (x) ∧Q)
8. (∃x : P (x)) ∨Q ≡ ∃x : (P (x) ∨Q)
9. (∀x : P (x)) ∨Q ≡ ∀x : (P (x) ∨Q)
10. (∃x : P (x)) ∧Q ≡ ∃x : (P (x) ∧Q)
11. (∀x : P (x))→ Q ≡ ∀x : (P (x)→ Q)
12. (∃x : P (x))→ Q ≡ ∃x : (P (x)→ Q)
13. Q→ (∀x : P (x)) ≡ ∀x : (Q→ P (x))
14. Q→ (∃x : P (x)) ≡ ∃x : (Q→ P (x))
15. (∀x : P (x)) ≡ Q ≡ ∀x : (P (x) ≡ Q)
16. (∃x : P (x)) ≡ Q ≡ ∃x : (P (x) ≡ Q)

Other rules:
17. ¬∀x.P (x) ≡ ∃x.¬P (x)
18. ¬∃x.P (x) ≡ ∀x.¬P (x)
——————————————————————————————————————————
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