
Lecture Notes
CS261 - Software Engineering

Plan-Driven methodologies

1. Software process model specifies what it should do,
how it should be organised and implemented, aligns with
customer requirements (validation) and evolves over time.

2. Plan-driven: all activities planned/fixed in advance,
measure progress against initial plan. Few team con-
straints can outsource and independently test components
(bc well planned). Easy to add members (churn). How-
ever, takes long time, hard to accommodate change or
respond to updated customer requirements.

3. Incremented Planning/development delivers soft-
ware in stages with customer feedback/acceptance test-
ing. Cheaper to accommodate change, software is avail-
able to user quicker, better perceived value for money.
But, hard to estimate cost, can lead to inconsistent design
with evolving features, makes architectural changes harder
over time, increases deployment overhead, and isn’t cost-
effective for documenting each version.

4. Waterfall Model: is plan driven, very rigid, sequential.
Requirements analysis: system’s services, constraints and
goals, system design: software components and their rela-
tionships, Implementation and unit testing: test individ-
ual components, Integration and system testing: test sys-
tem altogether, operation and maintenance: updates.

5. Reuse-oriented Software Development: Rewrit-
ing software is expensive, reuse common off the shelf
(COTS) systems (frameworks). Requirements spec,
component analysis: search for relevant components,
requirements modification: analyse and modify them
system design with reuse: design system with them,
dev and integration: integrate them system validation.

6. Software spec written during requirements engineering

Find if task feasible, cost effective, derive requirements,
put them in system requirements document, ensure
they’re achievable and valid, confirm with customer.

Agile methodologies

1. Agile planning is incremental, more adaptable to change,
so much faster, but not well-documented, so harder to
maintain.

2. Agile development supports customer involvement, incre-
mental delivery, people not process: creativity is encour-
aged, embrace change, maintain simplicity.

3. Compared to plan-driven, agile has less emphasis on doc-
umentation and more on actual development.

4.

5. Extreme Programming (XP) has incremental delivery
with fast iterations: several versions a day (small releases),
deliverables every 2 weeks, automated tests, continually
refactor code, strong customer involvement, record re-
quirements on story cards, at least 2 devs responsible for
any part of code, integrate components as soon as ready.

However, only works well in small experienced teams and
requires heavy customer involvement.

6. Scrum prioritises iterative development: general goals:
outline planning phase, sprint cycles: each cycle de-
velops increment of system, project closure: wrap up.

Takes 2-4 weks, daily meetings, follow a to-do, features
selected with customer, use when unstable requirements
or shaky project.

1

Requirement Analysis

1. Requirements describe what system does, what service
it provides and constraints on operation tailored to cus-
tomer’s needs; sets bases for tests, validation, verification
and cost estimation.

2. Customer-facingC-requirements are targeting customer
needs, and should be satisfied before the Developer-facing
D-requirements. C-R presents to users, so simple nat-
ural language and diagrams. D-R targets developers, so
exact project spec.

3. Requirement-Set Qualities: 1. Prioritised : time man-
aged 2. Consistent : non-conflicting updates, 3. Modifiable
and 4. Traceable: link to the source/reason.

4. Individual Requirement Qualities: Correct, Feasible,
Necessary, Unambiguous and Verifiable.

5. Grade the requirements on Must/Should/Could/Won’t to
decide what to do.

6. Requirement analysis document must be understood by
customers to ensure it meets their needs, managers to plan
the system, engineers to implement, testers to design tests
and maintainers to understand relationships between com-
ponents.

7. Requirement analysis document comprises: Preface, Intro-
duction, Glossary (not necessary), User requirements de-
sign, system architecture, system reqr spec, system mod-
els, system evolution, appendices.

8. Functional requirements: what system should do,
which services to provide, how should read in scenarios.

9. Non-functional requirements: ”qualities” like avail-
ability, performance, deployment, constraints on services.

10. Stakeholders have influence on system requirements, so
need to deal with conflicting reqs, legal factors. Then need
to classify and organise them, prioritise and negotiate,
and finally formalise in requirements spec.

11.Requirements Specification comprises validity: does
system support customer needs, consistency: are there
conflicts, realism: is system feasible, verifiability: once
complete, can system satisfy the requirements.

12.Requirements Validation: systematic manual analy-
sis (review) involving both customer and developers, can
prototype, use test-case generation for each requirement.

13.Requirements management: problem analysis: check-
ing if reqs valid and unambiguous, change analysis: find
effects of integration on the system. Change implementa-
tion: if valid, change requirement docs and implement.

Project Management

1. Main goals: meet deadlines, don’t exceed budget, meet
customer’s expectations, maintain proper team wellbeing.

2. People management: consistency: make them feel
valued, respect: give equal contribution opportunity, in-
clusion: consider everyone’s views, honesty.

3. Project Manager is responsible for project planning, re-
porting, risk/project management. Business analyst in-
troduces change to deliver value to stakeholders.

4. Software Architect: develops design of software given
customer requirements. Designer: creative front-end de-
veloper, Software Developer: programmer, Software
Tester: tests using black and white box techniques.

5. Informal groups work in competent teams, hierarchi-
cal groups have management levels, so better when sys-
tem can be broken into subproblems.

6. Risk management identifies, assesses, prioritises risks.

7. Project risks affect schedule or resources (staff turnover,
hardware malfunction, requirements change), product
risks - quality or performance of software (tool under-
performance) and business risks affect the organisation
(technology change, competition).

8. Risk types: technology risk (soft/hardware), people
risk (team), organisational risk (environment), tool risk
(development software), requirements risk (adjust to
change), estimation risk (approximate cost of resources).

9. Risk severity can be catastrophic (threatens project sur-
vival), serious (delays), tolerable (still meet deadline), in-
significant (ignore). Fix using avoidance: reduce prob-
ability of risk occurring, minimisation: reduce risk im-
pact, contingency plans: have plan in case risk happens.

10.Risk register: identify risk, grade on a relative impact
- relative likelihood table, find residual risk given a plan.

11.Project planning has proposal phase: plan resources,
startup phase: role assignment and project breakdown,
and periodical planning: adjust to changing reqs.

12.Project Scheduling: identify activities (tasks timeline)
and dependencies (relationships between tasks), estimate
resources needed, then allocate people .

2

13.Gantt Chart: show tasks against time.

14. Schedule estimation: experienced-based: use past
experiences to estimate timelines, algorithmic cost-
based: calculate the time given complexity and resources.

15. Success measurement: how it meets original specifica-
tion (quantitative), customer’s expectations (qualitative).

16. Problems with collaborating: code duplication, erasure,
lack of accoutnability and introduction of errors, use Git.

System Design

1. Requirements analysis: building contract between nat-
ural language/diagram based customer and unambigu-
ous mathematical developer.

2. System modelling: developing quantitative models to
clarify functionality, provide development basis and in-
form component-level decisions.

3. System modelling perspectives: external: model sys-
tem context, interaction: interdependencies, struc-
tural: organisation, behavioural: dynamics.

4. Unified Modelling Language (UML): unambiguously
represents static/structural view of the system (objects,
attrs) and dynamic/behavioural view (collaboration be-
tween objects).

5. Grammatical Approach: natural language system de-
scription, behavioural approach: identify objects based
on what participates in what behaviour, scenario-based
approach.

6. Class Diagram: UML notation showing system classes
and their relationships. Don’t include getters/setters or
inherited methods, make all other methods public. Prefix
interfaces with <<interface>> (+) public, (-) private,
(#) protected, (/) derived, () static, (∼) package.

7. Class diagram association: can connect with numbered
lines to denote amount/multiplicity: (*) zero or more,
(1) exactly one, (x..y) inclusive range, (x..∗) x or more.
Also has relationship name and navigability/direction.
Class hierarchy arrows: class (solid, black), abstract
class (solid, white), interface (dashed, white).

8. Associaiton can be one-to-one, one-to-many, ”is part of”
aggregation (white diamond), ”is made up of” compo-
sition (black diamond), ”uses temporarily” dependency
(dotted line).

9. Use case diagram: represents user’s (define interaction
with a user class, not every singular user) interactions
with the system (left).

10. Sequence diagram shows temporal interaction (dashed
line timeline) between processes, can terminate with a
cross. Active processes are rectangles (right).

11.Activity diagram: action rectangle, condition diamond,
parallelism line. State diagram shows how the system
state changes.

12. Structural/static Models show organisation of com-
ponents within the system. Formal methods include logic
calculi, type stytems and algebraic data types, program
semantics and automata theory.

Architectural Design

1. Architectural design is concerned with understanding how
system should be organised. Conceptual integrity: con-
ceptual vision of the solution, quality driven - embrace
quality attributes, recurring styles: adopt architectures
seen before, separation of concerns: reduce complexity.

2. Represented with box and line diagrams. Used to repre-
sent high-level system view for communication with cus-
tomer, and model components and their relationship.

3. Targets non-functional requirements such as performance,
security (levelled structure), safety, availability (fix issues

3

without stopping the system), maintainability since they
target system as a whole.

4. Pattern: way to represent and share common knowledge.

5. Layered Architecture: separate system into indepen-
dent layered modules s.t. they only rely on the level im-
mediately below. Facilitates incremental design. However,
layer going offline can affect entire system etc. Usually use
for security and addons.

6. Repository Architecture: knowledge base, all inter-
action is done through it. Components can be indepen-
dent, efficient data sharing, but have single point of failure,
needs standardised data, so difficult to evolve. Useful for
big data such as AI, aka ”black board” approach.

7. Pipe and Filter Architecture: linear processing, fo-
cuses on runtime organisation, flexible, supports paral-
lelism. Easy to understand and evolve, matches structure
of many applications, but doesn’t support GUIs and needs
standardised data. Used in data processing applications.

8. Model-View-Ctonroller (MVC) Architecture: focus
on how to interpret user interactions, update data and
present that data to user. Useful for web-based systems.
Model manages and updates data, view manages how
it’s present to users, controller manages user interactions
and passes to view. Has separation of components, can
easily change data, but overhead complexity, difficult to
distribute development.

Creational Design patterns

1. Design Pattern: standard solution to a common pro-
gramming problem. Comprises name, problem descrip-
tion, solution description and statement of consequences.

2. Creational design patterns: factories create objects,
builders create complex objects (like step-by-step recipe),
prototypes recreate by cloning.

3. Factory in OOP is a concise way to use constructors, but
involves many classes which have to be recursively updated
upon change.

4. Builder: creates complex objects comprising many dif-
ferent other objects. Different from a factory: simple con-
structors but requires many classes, not used as often.

5. Prototype: create new objects through cloning. Don’t
need another subclass to create it, keeps class hierarchy
and complexity simple, but circular references might cause
problems + have to update cloned object.

Structural Design patterns

1. Structural design patterns ease design and implemen-
tation by succinctly managing the relationships between
objects.

2. Proxy Pattern: create placeholders for other objects
(e.g. cover of a movie that when clicked redirects the user
to the movie itself), ”load on demand”. Add more com-
plexity through classes, but provides availability when not
ready, manages object life cycle etc.

3. Virtual proxy (lazy initialisation): delay resource-heavy
content loading with proxy. Protection proxy: access
control requiring credentials. Remove proxy: offer client
all functionality, but on another server. Logging proxy:
keep track of access and requests to a server. Caching
proxy: save results of an objects for later. Smart refer-
encing: garbage collection (if nobody references heavy-
weight object - delete it).

4. Decorator pattern: adds new behaviour to objects at
runtime. Inheritance is static. Can extend behaviour
without adding new subclasses, but removing wrappers
from stack is difficult, also order specific and

5. Adaptor Pattern: change data format dealt with to
make it easier to manage without changing the underly-
ing type (don’t change mph speedometer, just translate
into kph). However, wrappers make the code very com-
plex, promotes single responsibility principle (one object
handles conversion).

6. Flyweight pattern: get more objects in the memory
(multiple object copies reference shared attributes). Saves
memory but some data may need to be recalculated at
each call, complicated code.

7. Bridge pattern: decouple abstraction from its imple-
mentation so that the two vary independently. Compos-
ite pattern: tree structure of same-interface objects.

8. Facade Pattern: create simplified interface of existing
interface to ease usage in common tasks.

9. Pipes and filters: chain of processes where output of
each process is input of the next (like monads).

4

Behavioural Design patterns

1. Behavioural patterns describe how objects communi-
cate: either change their own internal data or interact by
passing data to another object.

2. Iterator Pattern: traverse a container to access its ele-
ments without exposing the structure. Supports parallel
runs. Extracts traversal logic out of the class making it
simple (single responsibility principle), but may be redun-
dant/ineffective.

3. Observer Pattern: automatically notify obj dependents
on state change. Works for both push/pull models: pro-
ducer/consumer, publish/subscribe. Publisher maintains
list of subscribers who opted in for each event to avoid
sending updates to non-subs. Relationships can change at
runtime, but subscribers are notified in random order.

4. Memento Pattern: save and restore objects without
revealing the details of is implementation (undo action).
Originator object makes snapshot of itself and stores it
in Memento within a Caretaker. Backups follow encap-
sulation and extract history maintenance keeping original
classes simple, but takes a lot of memory, caretakers need
to erase unneeded mementos, dynamic programming lan-
guages may modify states at runtime.

5. Strategy Pattern: select the method (strategy) to com-
plete a task at runtime. Original class becomes a context
object, deciding on which other patterns/classes to fol-
low depending on context of the problem. Can swap im-
plementations at runtime, simplifying the class hierarchy,
but requires clients to understand key differences between
strategies, anonymous functions are making this approach
obsolete.

6. Chain of Responsibility Pattern: command objects
are handled or passed on to other objects by logic-
containing processing objects.

7. Mediator Pattern: provides a unified interface to a set
of interfaces in a subsystem.

8. Scheduled-task Pattern: a task is scheduled to be per-
formed at a particular interval or clock time.

9. SOLID
• Single responsibility: a class should encapsulate the
needed data and functionality for just one thing.
• Open for extension/closed for modification principle:
once designed and complete, extend the class, not edit.
• Liskov substitution principle: behavioural subtyp-
ing, object that uses a parent class can use the other child
classes without knowing.

• Interface segregation Principle: improve maintain-
ability by keeping things decoupled.
• Dependency inversion Principle: interactions
should rely on well defined interfaces and go from low level
to high level to minimise num of dependencies.

Human Computer Interaction (HCI)

1. Attention: Selective: tune out things to focus on some
stimuli, Divided: focus on multiple things at once, Sus-
tained: attention span, Executive: keep track of steps
and goals in sustained attention.

2. Memory has sensory stores: perceptions, working mem-
ory: transitory info, long-term. Memory decays overtime
(decay theory), and new memory overwrites the old mem-
ory (displacement theory); proactive interference: can’t
retrieve memory because it’s stored in the wrong place.
Episodic memory: serial historical form, semantic: record
of facts. Focus on short term memory! Icons might be
resemblance: analogous image, exemplar, symbolic: high
abstraction, arbitrary.

3. Cognition: process by which you gain knowledge: rea-
soning, understanding etc. Norman’s human action
cycle: form a goal, intention to act, planning to act, ex-
ecution, feedback, interpret feedback, evaluate outcome.
Gulf of evaluation: psychological gap which must be
crossed to interpret a user interface - minimise load to un-
derstand the UI, Gulf of execution: gap between user’s
goals and the means to execute them (number of steps to
complete an action).

4. Gestalt principles:
• Figure ground: people tend to segment their vision
into the figure (foreground) and the ground (background).
• Similarity: if two things look similar people assume
they behave similar.
• Proximity: if two things are close by, people assume
they must be related.
• Common region: if two things are in the same box/re-
gion, people assume they are related.
• Continuity: series of objects in a line or curve are per-
ceived as related (Bezier curves are useful).
• Closure: we fill in the blanks for complex patterns (see-
ing faces where there are none).
• Focal point: you’re drawn to the most unique/obvious
piece of the image first.

5. Affordances are what an object allows us to do (open-
ing/closing the door). Made clear with signifiers (labels),
which can be perceptible (crossings) or invisible (the road
is walkable anywhere). Can be false, but must always

5

be perceptible. Feedback: give user info on actions per-
formed, constraint: retrain some interactions, mapping:
relationship between controls and their effects, consis-
tency: similar operations should use similar elements for
similar tasks.

6. Neilson’s Usability principles:
• Visibility of system status
• Match between system and real world (use user’s
langauge rather than system terms)
• User control and freedom: provide escape routes
(undo buttons)
• Consistency and standards: avoid ambiguous terms.
• Help users recognise and recover from errors: use
natural language error descriptions with solutions.
• Error prevention: prevent users from making mistakes
wherever possible.
• Recognition rather than recall: make all options
visible rather than force the user to remember how to find
them (Blender is terrible for this).
• Flexibility and efficiency of use: provide accelerators
for experts to do things faster (e.g. keyboard shortcuts)
• Aesthetic and minimalist design: avoid using unim-
portant info, keep it simple.
• Help and documentation: provide searchable infor-
mation with concrete readable solutions.

7. Metrics for solution evaluation: Ratio of success to fail-
ure, Time to complete task, # of errors a user makes, #
of times a user expresses frustration or satisfaction.

Dependability

1. Attributes of dependability:
1. Availability: likeliness of service being ready for use
when invoked.
2. Reliability: likeliness of the system providing desig-
nated service for a specified period of time. Perceived
reliability: how reliable the system appears to its users.
3. Safety: extend to which a system can operate without
damaging or endangering its environment.
4. Confidentiality: non-disclosure of undue information
to unauthorised entities.
5. Integrity: the capacity of computer system to avoid
altering, withholding or deleting the information.
6. Maintainability: function representing probability
that failed computer system will be repaired in ≤ t time.

2. Reliability measures: probability of failure on demand :
likelihood of system failing if someone makes a request for
service. Rate of occurrence of failures: expected number
of failures in a given time period. Mean time to failure:
avg time of system running without failing. Availability.

3. Relevant system properties: Repairability: how
easy to repair system when breaks. Maintainability: is
it economical to add new requirements and keep the sys-
tem relevant. Error tolerance: avoid user input errors.

4. System failures: Hardware fails because of design and
manufacturing errors, or end of components’ natural life.
Software fails due to errors in specification, design or
implementation. Operational or human mistakes.

5. Fault-Error-Failure cycle.

Can avoid with fault avoidance, detection and correc-
tion (discover and remove faults before deployments) and
fault tolerance (deal with mistakes).

6. Error detection and recovery:
• Graceful degradation: enable system to operate in
reduced capacity in the event of failure of some of its com-
ponents.
• Redundancy: include spare capacity in a system to be
used if part of the system fails.
• Diversity: enforce redundant components of different
types to decrease probability of them failing in the same
way.

7. Dependable processes:
• Documentable: have defined repeatable process model
that sets out the documentation that must be created.
• Standardised: applicable for many different systems
and should contain a set of standards that apply to all.
• Auditable: understandable by people other than those
using them to enable verification (traceable static testing)
• Diverse: include redundant and diverse verification and
validation techniques (fault tolerance).
• Robust: able to recover from failures of individual pro-
cess activities (fault tolerance).

8. Dependability is all about the context, requires consider-
ation of the entire system not just the intangible software.

9.

Protection systems mon-
itor control system, equip-
ment and environment, per-
forms some action and moves
system to safe state (shut-
down) upon faults.

6

10. Self-monitoring architectures: monitor their own oper-
ation, operate on separate channels and compare outputs
to ensure correct outputs.

11.N-version programming: multiple software units
made by different teams under the same specification.
Each version executed separately, outputs compared us-
ing a voting system, ignore inconsistencies, but usually
costly and impractical.

12. Overall, rely on diversity: give problem to several sep-
arate teams who don’t communicate and compare their
outputs. The chance of all of them being wrong is low.

System Testing

1. Testing shows that program does what it was indented to
do, highlights defects before the software is in use, forms
part of verification and validation, demonstrates the soft-
ware meets its requirements, but can only show presence
of errors, not their absence.

2. Static Testing (without execution): code review, walk-
throughs and inspections ”does code meet the spec”.
Studies quality, compliance and maintainability, not only
correctness. Can use support tools. Allows to consider
code quality, hidden (interaction) errors and works with
incomplete code. however bad at finding performance is-
sues and unexpected interactions between components.

3. Dynamic Testing: executing code test cases to validate
”does product meet needs of the customer”. Structural
(white-box) testing: control/data flow of system. Func-
tional (black-box) testing: formal component specifica-
tion, no view of the code.

4. Statement adequacy: all statements’ve been executed
by ≥ 1 test. Statement coverage = # executed statements

statements .
Also have branch adquacy/discovery, condition coverage.

5. Black-box testing process:
• Identify functions the software is expected to perform
• Create input data and determine expected output based
on function’s spec.
• Execute the test case and compare the actual and ex-
pected outputs.
• Check if application meets customer’s needs.

6. Unit Testing: initialise the system with inputs and ex-
pected outputs, then call the method and compare results.
Set and check all attributes, put object in all possible
states, simulate all events that cause a state change, can
automate, but remember bout inherited classes that may
violate assumptions, test them too.

7. Integration Testing: combine objects and methods, test
their interactions. Unit tests may miss errors of this level.
Interface Misuse: some component is not passing the
right parameters or receiving an unexpected return value.
Interface Misunderstanding: some interface doesn’t
understand behaviour of the other.
Timing Errors: data producer may operate differently
to consumer.

8. Check extremes of ranges, test interface calls with null
pointer parameters, design tests that cause one of the in-
teracting interfaces to fail and see how failure is handled.
Stress test, especially in message passing systems. When
components share memory, vary the order of components
accessing it.

9. System Testing: check that components are compati-
ble and interact as expected. may introduce off the shelf
components, like integration testing for the whole system.
Emergent behaviour are characteristics only seen when
components interact, need to test for both expected and
unexpected, usually with use-case testing and user inter-
actions.

10.Test Driven Development (TTD): develop tests for
an increment of code, don’t move onwards until all tests
pass. Most effective when developing a new system,
doesn’t replace unit testing!

1. Identify a small, implementable, functional increment
and write an ideally automated test.
2. Run this test before the increment, it must fail to
verify it’s working.
3. Implement the functionality (or refactor old code) and
re-run the test, once all of them pass, move onto the next
increment.

Other TDD benefits:
• High code coverage: each segment gets ≥ 1 associ-
ated test
• Regression testing: constantly verify that a new seg-
ment hasn’t introduced bugs into the system.

7

• Simplified debugging: the issue must be in the newest
segment of code.
• System documentation: tests double as documenta-
tion making it clear what the code is meant to be doing.

11.Write the Test First to clarify what the code segment
is supposed to do, makes implementation simpler since
there is a deep understanding. ”if you don’t know enough
to write the tests, you can’t develop the required code”.

12.User Testing can be:
Alpha Testing: selected users work very closely with
development team on very early versions of the software.
Reduces risk of unanticipated changes to software disrupt-
ing business.
Beta Testing: much larger group of users experiment
with more complete system version. Good for testing
software with wide range of settings, discovers issues in
interaction with the operating environment. Can server
as marketing, let people learn about the software.
Acceptance Testing: customers test the system to de-
cide if it’s ready for deployment. Often used to determine
if payment should be issued.

1. Define Acceptance Criteria: define what the user
will determine as an acceptable system. Can be difficult,
and may take chaning requirements into account.
2. Plan Acceptance Testing: establish resources,
schedule and order for testing. Defines requirements cov-
erage and mitigates poor performance.
3. Derive Acceptance Tests: test functional and non-
functional aspects of the system, cover most/all require-
ments, make sure tests demonstrate meeting of criteria.
4. Write Acceptance Tests: define user journey as a
series of steps, then define expected output, both aiming
to cover the set of requirements.
5. Run Acceptance Tests: take place in deployment
environment unless disruptive, difficult to automate, in-
volves use of end-users who may need training on how to
effectively test.
6. Negotiate Test Results: unlikely that all tests will
pass, decide which problems are negligible and agree on
how to fix any issues if possible.
7. Accept or Reject System: if unacceptable, decide
how much more development to involve, otherwise deploy.

Release Management

1. Version Control allows the system to roll-back and man-
age external back-up (usually cloud). Especially useful in
distributed code teams near-delivery, mitigates human
error: user commits bad code last minute and technical
error: laptop dies/gets stolen.

2. Can feasibly release development, feature, master and
sometimes test software system environments. Version
control allows to manage transition between these, and
ensure you release the right one.

3. System Building is done near the end of the project.
It links the system together, turning the codebase into a
deployable program. For this integration can use:
• Build Script Generation: either automate this or
edit scripts manually.
• Version Control (VC) System Integration: link
the build system to VC system to ensure the right version
for each component.
• Minimal Recompilation: system shouldn’t recompile
everything every time, only the needed components.
• Executable System Creation: ensure easy instal-
l/setup, link everything into a single executable.
• Test Automation: test the system before performing
a build.
• Reporting: ensure system lets you know if the build
succeeded.
• Documentation Generation: setup the build system
to generate any needed documentation.

4. System building comprises Development System: dif-
ferent team members may have different versions, need
to compile into a final version. Build Server needs to
maintain the definitive version and link together all ex-
ternal sources. Target Environment includes databases
and apps not present in development environment, con-
sider these differences.

5. Data Management: dummy data/stubs differs from re-
al/production data, so when transitioning to it, need to
check: availability to data sources, constraints around
data acquisition (standards, cost), overhead of data pro-
cessing (memory, time), long-term storage/backups (cost,
availability, capacity) and data sharing/access constraints.
People are careful about the historical record of the data
provenance data and its origins.

6. Releasing Software is expensive. Need to consider
config, installation (installer), documentation, marketing,
time of new version release (not too often or too rare).

8

7. Don’t assume the user s on a particular version of the soft-
ware or that it’s unchanged.
1. Dependencies should be explicit and recorded.
2. Physical distribution should be hidden, not hardwired
and via multiple channels.
3. Release process should require minimal effort for both
parties.
4. Scope of release (to whom) should be controllable, use-
ful to record downloads.
5. Sufficient descriptive information should be available.
6. Interdependent systems should be retrievable as a
group.
7. Unnecessary retrievals should be avoided.
8. History should be kept (release log).

8. Factors to consider when implementing a change:
• Consequences of not implementing the change: if
the system is crashing, you must make the change, other-
wise might not.
• Benefits of change: is the change worth the cost.
•Number of users affected by the change: is it useful
to the public, will the users need to re-learn the system.
• Cost of making the change: will it involve many
components, how complex or time consuming etc.
• Product release cycle: don’t overwhelm users with
releases, if change isn’t urgent better wait.

9. Developers need to decide if the customer’s suggestion
should be implemented/given priority over other planned
adjustments. Refactoring and quality improvement should
also be left to the developers’ discretion

9

Theme Keywords found in your notes

Process models Waterfall, Incremental, Prototyping, Spiral, XP, Scrum, Agile Manifesto,
Backlog, Sprint, Retrospective

Requirements Functional vs Non-functional, Elicitation, Validation, Stakeholders, MoSCoW,
Use case, Traceability

Project management Gantt Chart, Critical Path, Risk Matrix, Risk Exposure = P × L, Risk Miti-
gation, Scheduling, Motivation (Herzberg)

Modelling & Design UML, Class diagram, Sequence diagram, State machine, Encapsulation, Co-
hesion, Coupling

Architectures Layered, Repository, Client-Server, Pipe-and-Filter, MVC, Microservices, Ar-
chitectural Style, Quality Attribute

Design Patterns Singleton, Factory, Adapter, Composite, Observer, Strategy, Decorator,
SOLID principles (SRP, OCP, LSP, ISP, DIP)

HCI Affordance, Feedback, Consistency, Nielsen Heuristics, Visibility, Mental
Model, Fitts’s Law

Dependability & Safety Fault, Error, Failure, Fault-tolerance, Redundancy, Reliability, Safety-critical,
Hazard, MTTF, POFOD

Testing & Verification Static analysis, Dynamic testing, Unit testing, Integration testing, TDD, UAT,
Test coverage

Release & Maintenance Version Control (VCS), Git, Branching, Build Automation, Semantic Version-
ing, CI/CD, Regression, Patch

Table 1: Buzzwords

10

