
Lecture Notes
CS260 - Algorithms

Stable Matching

Each one of n hospitals wants to hire ones of n doctors. Both
have preferences, need a self-enforcing assignment process.

1. Applicant d and hospital h are unstable if given already
assigned d′, h′, it holds that d(h) > d(h′) and h(d) > h(d′)
where var1(var2) is var1’s preference of var2, (d, h prefer each
other to their assignments, but not assigned), else stable.

2. Self-enforcing: selfish action doesn’t destabilise system.

3.Perfect matching: everyone matched bijectively (1 doc
to 1 hosp). Stable matching if also has no unstable pairs.

Propose-and-reject [Gale-Shapley] O(n2)

d,h = free, free # all doc d, hosp h start free
# exists free doc who hasn't applied to every hospital
while (∃ d, h : d free, ∄ d(h)) {
d, h = doctor, first prefernce unapplied h on d's list
if h == free: match(d,h)
elif h(d) > h(d'): match(d,h); d' = free # swap better
else: h rejects d}

Obs 1 : Docs apply to hosp in decreasing order of preference;
Obs 2 : Once matched, h never becomes unmatched.

4.Termination: algorithm terminates in T(G-S) = O(n2)
Proof: Each while loop iteration d applies to a new h, hence
only n2 possible pairings, n(n− 1) + 1 proposals.

5.Perfection: All doctors and hospitals get matched.
Proof : FTSOC suppose ¬matched(d) upon termination, so
∃h : ¬matched(h), hence was h never applied to (by Obs 2 ),
but d applied everywhere. ⊥

6. Stability: G-S does not produce any unstable pairs.
Proof : suppose d, h is an unstable pair.
Case: ¬applied(d, h)→ d(h′) > d(h), hence d,h stable
Case: applied(d, h)→ h(d′) > h(d), hence d,h stable.⊥

7.Doctor Optimality: GS matching S∗ is doctor-optimal.
Proof : FTSOC suppose ∃h′|d(h) < d(h′): ∀i | di(hi) >
di+1(hi+1), hence ∃rej(d1) by some h1. Let matching S
(d1, h1) be stable. Rej d1 → pair(d2, h1) s.t. h1(d2) >
h1(d1). Now S=(d2, h2) → ¬rejected(d2) when rej(d1) by
h1 → d2(h1) > d2(h2), but h1(d2) > h1(d1), hence matching
S = (d2, h1) is not stable.

8.Hospital Pessimality: doctor-optimality makes hospi-
tals receive their worst preference. Proof : FTSOC suppose

S∗(d1, h1)|¬min(h1(d1)) → ∃S(d2, h1)|h1(d2) < h1(d1). Let
S(d1, h2), but S

∗ → d1(h1) > d1(h2), so S(d1, h1) unstable.⊥

9.Generalised GS: number of doctors and hospitals don’t
need not match |d| ≠ |h|, ∃ unacceptables, |matches| > 1.

Greedy Algorithms

Pick the next thing to do that looks like the best option.
Earliest start/finish time, shortest duration, fewest conflicts.
Completes jobs in order of sj , fj , fj − sj or cj j’s conflicts.

Interval Scheduling

Job j starts at sj , finishes at fj . Two jobs compatible if
they don’t overlap j1 ∩ j2 = ∅. Goal: Find maximum sub-
set of mutually compatible jobs.

Earliest finish time first O(n log n)

Sort jobs by finish time s.t. f1 ≤ f2 ≤ ... ≤ fn #nlogn
A ← ϕ # set of jobs selected
for j=1 to n {

if (job j compatible with A): A ← A ∪ {j}
} return A

Theorem: it’s optimal. FTSOC, assume greedy isn’t opti-
mal. Let i1, ...ik be selected jobs, j1, ..jm be jobs in optimal
solution with i1 = j1, ...ir = jr for largest possible r.

Interval Partitioning

Depth of a set of open intervals is the maximum number
that contain any given moment in time

Fewest conflicts first O(n log n)

Sort intervals by start time s1 ≤ s2 ≤ ... ≤ sn
d ← 0 # num allocated classrooms (depth)
for j=1 to n {

if (lecture j compatible with room k):
schedule j in first free classroom k

else
allocate new classroom d+1
schedule j in d+1
d ← d+ 1

} # keep k in priority queue

Theorem: it’s optimal. Notice i ∩ j ̸= ∅ → di ̸= dj . Let
d = num classrooms greedy allocates, so kd j∩ji incompati-
ble with all d− 1 others (”witness”). These d jobs end after
sj , otherwise could’ve used one, all incompatibilities caused
by lectures starting ≤ sj . So have d overlapping lectures at
time sj + ϵ→ all correct schedules must use ≥ d rooms.
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Minimising lateness

Single resource processes 1 job j at once requiring tj
time and is due at time dj . It starts at sj and finishes at
fj = sj + tj . It has lateness Lj = max{0, fj − dj}, and the
goal is to minimise max. lateness.
Observ.1: There ∃ an optimal schedule with no idle time.
Proof: Inversion is pair of jobs i, j|i < j, but j scheduled
before i, swap to fix (no inversions → sorted → earliest
deadline first order).

Earliest-deadline first O(n log n)

Sort n jobs by deadline s.t. d1 ≤ d2 ≤ ... ≤ dn
t ← 0
for j=1 to n {

Assign job j to interval [t,t+tj]
sj ← t, fj ← t+ tj
t← t+ tj

} return intervals [sj , fj]

Observ: If idle-free schedule has inversion, then it has an
adjacent inversion.
Proof : Let (i, j) be inversion (i < j) that is closest but not
adjacent, k immediately follow j, then either j > k → (j, k)
adjacent or j < k → (i, k) is closer as i < j < k, so either
find adjacent inversion or (i, j) not closest.
Exchange argument: Swapping two adjacent, inverted
jobs reduces the number of inversion by 1 and doesn’t in-
crease the max lateness. UNDERSTAND WHY!
Theorem: Greedy schedule S is optimal.

Proof: S∗ def
= optimal schedule with fewest num of inver-

sions. Assume S∗ has no idle time, if S∗ has no inversions,
then S = S∗, else let (i, j) be an adjacent one. Then swap-
ping i, j doesn’t increase max lateness, strictly decreases
num of inversions, but contradicts S∗ having fewest inver-
sions.

Coin-Changing

Given currency denominations, find a way to pay full
amount using least number of coins.
Cashier’s algorithm: At each iteration, add coin of the
largest value that doesn’t go past the total amount. Only
works for certain denominations.

Cashier’s algorithm O(n log n)

Sort coins denominations by value c1 < ... < cn
S ← ϕ # coins selected
while (x̸= 0 {

let k be max(int(k)) s.t. ck ≤ x
if (k==0): return "no solution"
x ← x - ck
S ← S ∪ {k}

} return S

Offline Caching

Capacity to store k items, sequence of m item requests
d1, ..., dm. Cache hit: item in cache upon request, cache
miss: item isn’t there, must fetch item into cache, evict
some other item if it’s full. Goal: find eviction schedule to
minimise number of cache misses. Offline caching: sequence
of requests is known in advance.
Theorem [Belady, 1960s]: Furthest-in-future (FF) evic-
tion strategy: Evict item that isn’t requested until furthest
in future. Reduced schedule is one that only inserts an
item into cache in the same step as it is requested. Unre-
duced otherwise.
Claim Given any unreduced schedule S, can transform it
into a reduced schedule S′ with no more cache misses
Proof: By induction on number of unreduced items. Sup-
pose S brings d into cache at time t, without a request. Let
c be the item S evicts when it brings d into cache. Case 1:
d evicted at time t′, before next request for d: skip it. Case
2: d requested at time t′ before d evicted: delay it.
Invariant: ∃S (optimal reduced schedule) that makes
same eviction schedule as SFF through first j requests.
PROVE THAT FF IS OPTIMAL OFFLINE
LRU is k-competitive, or only k (cache size) times worse
than offline. LIFO can be arbitrarily bad.

Selecting breakpoints

Make as few refuelling stops as possible on a journey.
Greedy: go as far as you can before stopping.

Truck driver’s algorithm O(n log n)

Sort breakpoints s.t. 0 = b0 < ... < bn = L
S, x = {0}, 0 # breakpoints, curr location
while (x ̸=) {

let p = max(int) s.t. bp ≤ x + C
if (bp = x): return "no solution"
x, S = bp, S ∪ {p}

} return S

Proof: FTSOC assume greedy isn’t optimal. Let 0 =
g0 < ... < gp = L be breakpoints chosen by greedy, and
0 = f0 < ... < fq = L to be optimal. Need ∀f, g|fi = gi but
gr+1 > fr+1. DON’T UNDERSTAND ⊥
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Graph Algorithms

1. Undirected graph, Adj matrix/list, (simple)path, con-
nected graph, cycle, tree, rooted tree

BFS

1. BFS: explore from node s in all directions, one layer at
a time.

2. Theorem: ∀i : Li consists of all nodes at distance i
from s. There is a path from s to t iff t ∈ Li.

3. Property: Let T be a BFS tree of G = (V,E) and
(x, y) ∈ G be an edge. Then layers of x and y differ by
at most 1.

4. Theorem: Adj. list BFS runs in O(m + n). Proof :
Consider node u, there are deg(u) incident edges (u, v),
so T =

∑
u∈V deg(u) = 2m .

5. Connected component: all nodes reachable from s;
can be found using any exhaustive search like BFS.

Bipartite Graphs

1. Bipartite graphs: no incident edges of the same colour.
Used for stable matching, scheduling and recommender
systems. Use BFS, alternating neighbour colours be-
tween red, and blue; takes O(n+m) for adj. list.

2. Lemma: if graph G is bipartite, it can’t contain an odd
length cycle. Proof : Impossible to 2-colour odd cycle.

3. Lemma: Let graph G be connected, L0, .., Lk be layers
produced by BFS starting at node s. Then either:
1. No edge within same layer, and G is bipartite.
Proof : Suppose ∄(x, y) ∈ G s.t. x, y ∈ Li, by BFS
property, all edges join nodes on adj. layers. bipartite
with red when even i else blue.

2. Some edge of G joins two nodes of the same layer, so
odd-len cycle - not bipartite. Proof : suppose (x, y) ∈ G
s.t. x, y ∈ Lj . Let z ∈ Li =lca(x, y) (lowest com-
mon ancestor). Cycle x → y → z → x has length
1 + (j − i) + (j − 1), which is odd.

4. Corollary: Graph G is bipartite iff it contains no odd
length cycle. Proof : follows from above lemmas.

Graph Connectivity

1. Directed graph G = (V,E) - edges are ordered pairs.
Digraph problems include: directed reachability, digraph
exploratoin, shortest path and strong connectivity.

2. Nodes u, v are mutually reachable if there are paths
from u to v and v to u. G is strongly connected if all
node pairs are mutually reachable.

3. Lemma: Given any node s, G is strongly connected iff
every node is reachable from s and s is reachable from
every node. Proof : first follows from definition, reverse:
u⇝ v = u⇝ s+ s⇝ v; v ⇝ u = v ⇝ s+ s⇝ u.

4. Theorem: Can test if G is strongly connected in
O(m + n). Proof : Pick any node s, run BFS from s
in G, then BFS from s in Grev (reverse orientation of
every edge in G), return true if all nodes are reached in
both. Correctness follows from previous lemma.

Minimum Spanning Tree

1. Minimum spanning tree. Given an undirected con-
nected graph G = (V,E) with edge weights ce ∈ R, MST
is a subset of edges T ⊆ E s.t. T is a spanning tree (cov-
ers every node) whose sum of edge weights is minimised.

2. Cutset D is subset of edges with exactly one endpoint
in S. A cut is a subset of nodes S.

3. Cycle-cut intersection property (C-CI): a cycle and
a cutset intersect in an even number of edges.

4. Cut property: Let S be any subset of nodes, and e -
min cost edge with exactly one endpoint in S, then MST
e ∈ T ∗. Cycle property: Let C be any cycle in G,
f ∈ C - max cost edge, then MST f /∈ T ∗. Assume edge
costs ce distinct. Proof on week 3 page 41.

5. Cayley’s formula: There are nn−2 spanning trees of
Kn, so brute force is infeasible. Use greedy instead:

6. Kruskal’s algorithm: start with T = ∅, consider
edges in ascending order of cost, insert edge e in T
(cut prop.) unless doing so would create a cycle (cycle
prop.). Use union-find on sets O(logm) and sorting
takes O(m logm).

7. Reverse-Delete algorithm: start with T = E, con-
sider edges in descending order of cost, delete edge e
from T unless it disconnects T .

8. Prim’s algorithm: start at some root node s, greedily
grow a tree T from s by iteratively adding cheapest edge
e that has exactly one endpoint in T (cut property).
Use PQ for nodes to consider, set of explored nodes S.
∀v ∈ PQ, store cost of cheapest edge (v, u ∈ S) - a[v].
Runs in O(n2) with array, O(m log n) with binary heap.

9. Boruvka’s algorithm: start with each node in its own
cluster, add cheapest edge outgoing from each cluster
and merge them. Iterate until no more merges.

10.Lexicographic tiebreaking: perturb cost of ei by
i
n2 .
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Dijkstra’s algorithm

1. Shortest path problem: Given directed graph G
with edge weights w(e) ≥ 0, src s and dest t, write
path P is a sequence of edges e|P | = (v|P |−1, v|P |), so

w(P ) =
∑|P |

i=1w(ei), find shortest directed path s to t.

2. Dijkstra’s algorithm: maintain a set of explored
nodes S with shortest path d(u) from s to u; initialise
S = {s}, d(s) = 0, then repeatedly choose unexplored
node v s.t. c(v) = mine=(u∈S,v)d(u)+w(e) (shortest path
to u + edge (u, v)) and add v to S, set d(v) = c(v).

3. Invariant: ∀u ∈ S : d(u) is length of shortest s − u
path. Proof : Base case: |S| = 1: d(s) = 0, I.H.: As-
sume true for |S| = k ≥ 1. Let v be next node added
to S, choose edge u − v. Shortest s − u path + (u, v) is
s − v path of len c(v). Any s − v path w(P ) >= c(v):
Let x − y be first edge in P to leave S, P ′ - subpath to
x, then w(P ) > c(v) when reaches y.

x(P ) ≥ w(P ′)+w(x, y) ≥ d(x)+w(x, y) ≥ c(y) ≥ c(v) = d(v)

4. Efficient implementation uses PQ of unexplored nodes,
prioritised by c(v) - O(m+ n log n) with Fibonnaci heap.

Divide-and-Conquer Algorithms

Break problem into several parts (divide), solving each one
recursively (conquer), and merge the solutions.

Sorting

1. Mergesort: divide array into two halves O(1), sort each
2T (n/2) and merge O(n).

2. Set T (n) = number of comparisons to mergesort an
input of size n. Base case: T (n) = 0 if n = 1 (single
element is sorted), else T (n) ≤ T (⌈n/2⌉) + T (⌊n/2⌋) + n.
Solution: T (n) = O(n log2 n). Assume n is a power of 2.
I: Proof by Recursion Tree

II: Proof by Telescoping. Claim: if T (n) satisfies the
recurrence, then T (n) = n log2 n. Proof : For n > 1:

T (n)

n
=

2T (n2 )

n+ 1
=

T (n2 )

(n2 ) + 1
= ... =

T (nn)

(nn) + 1 + ..+ 1
= log2 n

III: Proof by Induction: Base case n = 1 follows im-
mediately, I.H.: assume T (n) = n log2 n, goal: show
that T (2n) = 2n log2(2n). So, T (2n) = 2T (n) + 2n =
2n log2 n+ 2n = 2n(log2(2n)− 1) + 2n = 2n log2(2n).
IV : optional page 13-14

Counting Inversions

1. Inversion between i, j is if i < j but ai > aj for rank a.

2. To count inversions: separate list into two pieces, re-
cursively count inversions in each half, count inversions
where ai, aj are in different halves (assume sorted, so if
aj < ai, it needs n− i inversions, so O(n)), return sum of
three quantities.

Closes Pair of Points

1. Given n points in the plane, find a pair with smallest
Euclidean distance between them. Assume unique x co-
ordinate

Proof : Let si be the point in the
2δ-strip with ith smallest y coord.
Claim: if |i− j| ≥ 7 then distance
between si, sj ≥ δ. In 2δ × δ rect-
angle R with min y coord of si,
points outside R are further than
δ. Divide R into 8 equal squares,
no two points in same δ

2 ×
δ
2 box

as otherwise contradicts conquer
step. So, at most 7 other points
in R.

2.
Closest Pair (cp) Algorithm O(n log2 n)

Closest-Pair(p1, ..., pn) {
Compute sep. line L s.t. |left|≈|right|
δ = min(cp(left), cp(right))
Del. points further > δ from L, sort others by y

coord. Update δ if 7-neighbour distance is
smaller.

return δ
}

Don’t sort points in strip from scratch each time
O(n log n) - maintain x, y coord-sorted lists, merge.
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Master Method

1. Used to solve recurrences of form T (n) = aT (nb ) + f(n)
with branching factor a, ai sub problems of size n

bi
at ith

level (total 1 + logb n levels), and f(n) work for merging.

2. Take f(n) = nc, then work changes by r = a
bc each level,

resulting in total work T (n) = nc
∑logb n

i=0 ri. Proof : if
c > logb a then r < 1, so T (n) is geometric series with
common ratio r.
Case 1: r < 1→ T (n) = Θ(nc) (1 is highest factor);
Case 2: r = 1→ T (n) = Θ(nc log n) (1 for each level);
Case 3: r > 1→ T (n) = Θ(nlogb a) (rk is highest fac).

3. Now n doesn’t have to be a power of b. Let a ≥ 1, b ≥
2, c ≥ 0. Suppose T (n) = aT (nb ) + nc with T (0) =
0, T (1) = Θ(1); n

b = ⌈nb ⌉ = ⌊
n
b ⌋. Then:

Case 1. c > logb a ⇒ T (n) = Θ(nc)

Case 2. c = logb a ⇒ T (n) = Θ(nc log n)

Case 3. c < logb a ⇒ T (n) = Θ(nlogb a)

4. Doesn’t work for: num of subproblems isn’t a constant,
is less than 1 or the work to dovide and combine them
isn’t Θ(nc), use induction or telescoping.

Integer Multiplication

1. Long multiplication takes n binary shifts and n O(n)-
bit additions, so Θ(n2), use Karatsuba Multiplication
instead: Add two 1

2n-bit integers, multiply three such

integers recursively a = a1x+ a0; b = b1x+ b0 for x = 2
n
2

ab = a1b1x
2 + (a1b0 + b1a0)x+ a0b0

= a1b1x
2 + ((a1 + a0)(b1 + b0)− a1b1 − a0b0)x+ a0b0

Hence, n-bit integer multiplication takes O(nlog2 3)

Karatsuba Algorithm O(nlog2 3)

def FM(x,y,n): # Fast Multiply
if (n==1): return x*y; else:
m,a,b,c,d = ⌈n2 ⌉, ⌊

x
2m ⌋, xmod 2m, ⌊ y

2m ⌋, ymod 2m

e,f,g = FM(a,c,m), FM(b,d,m), FM(a+b,c+d,m)
return 22me+2m(g+h)+f

Matrix Multiplication

1. Given n× n matrices A,B, C = AB: Cij =
∑n

k=1AikBkj

taking Θ(n3), so use Block Matrix Multiplication:

2. Partition A,B into 1
2n×

1
2n blocks, multiply 8 such pairs

recursively, add products using 4 matrix additions.

3. Still O(n3), so partition A,B into 1
2n ×

1
2n blocks, com-

pute 14 such matrices via 10 additions, recursively multi-
ply 7 pairs, combine into 4 terms using 8 additions - this
is Strassen algorithm, taking O(nlog2 7).

4. Sparsity: many matrices are mostly 0, caching ef-
fects: fast cache memory makes a difference, numerical
stability: handle small and large values, odd matrix
dimensions, parallelism, base case at n = 128.

5. Conjecture: ∀ϵ > 0 : O(n2+ϵ) is optimal, not practical.

Dynamic Programming

Break up a problem into a series of overlapping sub-
problems, and build up solutions to the whole.

Weighted Interval Scheduling (WIS)

1. Job j starts/finishes at sj , fj with weight or value vj .
Two jobs are compatible if they don’t overlap. Goal:
find maximum weight subset of mutually compatible

jobs. Label jobs by finishing time f1 ≤ ... ≤ fn, p(j)
def
=

largest index i < j s.t. i, j compatible.

2. Write OPT(j)= optimal solution for 1, 2, ..., j. Case 1:
OPT selects j: collect profit vj , must include OPT from
remaining compatible jobs 1, 2, .., p(j) Case 2: OPT
doesn’t select j, include OPT from 1, 2, ..., j − 1.

3. Bellman equation:

OPT(j) =

{
0, if j = 0

max{vj +OPT (p(j)), OPT (j − 1)} else

4. Memoization means to store results of each subprob-
lem in a table to avoid re-computation. Claim: memo-
ized WIS takes O(n log n). Proof : Sort by finish time:
O(n log n), each lookup table invocation is O(1) and ei-
ther return an existing value M [j], or fills in a new entry
and makes 2 recursive calls. Write progress measure Φ =
# nonempty entries of M[], since Φ ≤ n → at most 2n
recursive calls, so O(n) after pre-sorted by s, f .

5. Bottom-up dynamic programming: unwind recur-
sion, fill in the table from smallest to biggest.

Bottom-up WIS O(n log n)

Inp: n, s1,...,sn, f1,...,fn, v1,...,vn
Sort jobs by finish times s.t. f1 ≤ f2 ≤ fn
Compute p(1),...,p(n)
Iterative-Compute-Opt { M[0] = 0
for j=1 to n : M[j] = max(vj + M[p(j)], M[j-1])}
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Segmented Least Squares

1. Given n plane points (x1, y1), .., (xn, yn) with x1 < .. <
xn find a sequence of lines minimising some f(x). Sum
of squared error is SSE1,n =

∑n
i=1(yi − axi − b)2,

choose a, b to minimise SSE. Use partial derivatives:
SX1,n =

∑n
i=1 xi, SXY1,n =

∑n
i=1 xiyi, etc takes O(n)

per sum.

2. Combine SSE for each segment as E with L lines,
f(x) = E + cL(regularisation term) for some c > 0.
Write OPT(j) be min. cost for points p1, .., pj and e(i, j)
= their min. sum of squares or OPT(i, j) use Bellman:

Segmented-Least-Squares O(n3)→ O(n2)

Inp: n, p1,..,pN, c
def SLS() { M[0] = 0
for j=1 to n: for i=1 to j:
compute eij for segment pi,..,pj

for j=1 to n:
M[j] = min1≤i≤j(eij+c+M[i-1])

return M[n]}

3. To speed up to O(n2), use cumulative prefix sums:

aij =
nSXYi,j − SXi,jSYi,j
nSXXi,j − (SXi,j)2

; bij =
SYi,j − aSXi,j

n

computing aij , bij , e(i, j) takes O(n) each. Prefix sums:
SXi,j = SX1,j − SX1,i−1 - precompute SX1,j for
j = 1..n in O(n) to find any SXi,j in O(1), same for
SY, SXX,SXY , so now e(i, j) takes O(1) per lookup,
hence O(n2) overall.

Knapsack Problem (2-D)

1. Fill knapsack to maximise total value given n objects ith

of which has weight and value wi, vi > 0.

2. Create 2-D v × w lookup table, OPT(i, w)
def
= max.

profit subset of items 1, .., i with weight limit w. Case
1: OPT(i, w) doesn’t select item i: best of {1, .., i − 1}
using w. Case 2: OPT(i, w) selects i - update weight
limit w − wi, and use to select best of {1, .., i− 1}.

Knapsack Bottom-Up O(nW )

Inp: n, W, w1,..,wN, v1,..,vN
for w=0 to W: M[0, w] = 0
for i=1 to n: for w=1 to W:
if (wi >w): M[i,w] = M[i-1,w]
else: M[i,w] = max{M[i-1,w], vi+M[i-1,w-wi]}

return M[n, W]

Not polynomial input size W ! It’s specified in logW
bits, so time is exponential, hence called pseudo-
polynomial, however NP-complete.

RNA Secondary Structure

1. Express RNA as string B = b1b2..bn over alphabet
{A,C,G,U}, possible pairs: A,U and G,C.

2. Secondary structure is a set of pairs S = {(bi, bj)}
s.t.: Watson-Crick - S is a matching and each pair
in S is a base pair complement: AU,UA,CG,GC. No
sharp turns: all pairs’ edges separated by ≥ 4 bases:
(bi, bj) ∈ S → i < j − 4, and Non-crossing: if
(bi, bj), (bk, bl) ∈ S → ¬(i < k < j < l). Secondary
structure forms with optimum total free energy. Goal:
find secondary struct S maximising num base pairs.

3. OPT(i, j)
def
= max. num of base pairs in S of bibi+1..bj :

Case 1: i ≥ j − 4→ OPT(i, j) = 0 by no-sharp turns.
Case 2: base bj not in a pair: OPT(i, j) = OPT(i, j−1),
(nothing changed);
Case 3: base bj pairs with i ≤ t ≤ j − 4 : bt, then
non-crossing decouples sub-problems: OPT(i, j) =
1 +maxt{OPT(i, t− 1)+OPT(t+ 1, j − 1)}

Bottom-Up DP Over Intervals O(n3)

RNA(b1,..,bn) {
for k=5 to n-1: for i=1 to n-k:
Compute M[i,i+k] using above formula

return M[1,n]}

Sequence Alignment

1. Given gap penalty δ and mismatch penalty αpq, and
their sum being cost, find alignment of minimum cost.
Alignment M is set of ordered pairs xi, yj one-to-one.
Shouldn’t cross: xi, yj ; xi′ , yj′ cross if i < i′ but j > j′.

2. OPT(i, j)
def
= min cost of aligning strings x1..xi, y1..yj .

Case 1: OPT matches xi, yj , so pay αij+ min cost of
aligning preceding x1..xi−1, y1..yj−1.
Case 2a: OPT leaves xi unmatched: pay δxi + min cost
of x1..xi−1, y1..yj .
Case 2b: OPT leaves yj unmatched: pay δyj + min
cost of x1..xi, y1..yj−1.

Sequence Alignment O(m · n)
Seq-Align(m,n, x1,..,xm, y1,..,yn,δ,α) {
for i=0 to m: M[i,0]=iδ; for j=0 to n: M[0,j]=jδ
for i=1 to m: for j=1 to n:
M[i,j] = min(α[xi,yj]+M[i-1,j-1], δ+M[i-1,j],

δ+M[i,j-1]]
return M[m, n]} # O(m·n) space is too bad
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Sequence Alignment in Linear Space

1. Want to avoid quadratic space: build up table one row
at a time, forget old rows, need to compute OPT(i, •)
from OPT(i− 1, •).

2. Edit distance graph: let f(i, j) = OPT(i, j) be short-
est path from (0, 0) to (i, j), so can compute f(•, j) for
any j in O(m · n) time and O(m+ n) space.

3. For shortest (i, j) − (m,n) path g(i, j), reverse edges to
swap roles of (0, 0) and (m,n), and compute as before.

4. Notice cost of shortest path via (i, j) is f(i, j)+g(i, j), so
given index q that minimises f(q, n2 ) + g(q, n2 ), the short-
est (0, 0)− (m,n) path uses (q, n2 ). Divide: Align xq, yn

2

in DP solution, Conquer: recursively compute optimal
alignment in each piece.

5. Theorem: Let T (m,n) = max runtime on strings of
m,n at longest, then T (m,n) = O(m · n log n).
Proof (by induction on n): O(m · n) to compute
f(•, n2 ), g(•,

n
2 ) and find q, then T (q, n2 ) + T (m − q, n2 )

time for two recursive calls. Choose constant c s.t.
T (m, 2) ≤ cm and T (2, n) ≤ cn and T (m,n) ≤
cmn + T (q, n2 ) + T (m − q, n2 ). Base case: m = n = 2,
I.H.: T (m,n) ≤ 2cmn:

T (m, 2) ≤ T (q,
n

2
) + T (m− q,

n

2
)

≤ 2cqn

2
+

2c(m− q)n

2
+ cmn = 2cmn

Induction holds, so T (m,n) ≤ 2cmn = O(m · n).

Week 6

P, Complexity Classes, Tractability

1. An algorithm is a well-specified set of instructions that,
when followed, provide the answer to a given question.

2. A proof is a convincing argument that a claim is true.
Provide proof of Correctness and Efficiency.

3. Complexity of a problem is the time/space efficiency of
the best algorithm that solves it.

4. Complexity class is a set of problems all fulfilling
some property. A problem X ∈ NP iff there is a piece
of evidence (witness) that can be quickly confirm that
answer is T for particular instance.

5. A problem is tractable if it can be solved in practice,
by computer in reasonable time. Set of problems in P is
exactly the set of problems which are tractable. Many
problems aren’t known to be neither tractable nor in-
tractable, so find relative difficulty.

6. Algorithmic problem X is polynomial (∈ P) PTIME if
∃ algorithm solving X in O(nk) for some constant k, or
• X is tractable, or • X admits an efficient algorithm.

PTime
def
= ∪k∈NO(nk)

7. Problems can be search, where output must fulfill some
predicate, optimisation - such that output is max/min
somehow and decision X : inp→ Yes/No (use for NP).

NP and Independent-Set

1. Independent-Set S in graph G = (V,E) is a subset of
V s.t. no two vertices in S are adjacent in G. IS prob-
lem: given an undirected graph G and integer k, is there
an IS of size k in G?

2. NP is a complexity class containing decision prob-
lems that are ”easy to verify”. Decision problem X is ∈
NP iff ∃ O(nk) verifier C taking problem instance i and
candidate witness w as inputs. If answer to X(i) = F
then C(i, w) is always F , else ∃w s.t. C(i, w) = T .

3. NP (nondeterministic polynomial-time), if have ver-
ifier for problem X, we have a nondeterministic algo-
rithm for X: Given an instance i of X: Guess a possible
polynomially-sized witness w for i, run verifier C on in-
put i and w. If any w is a witness for i, return T .

4. Theorem: P ⊆ NP. Proof : ∀X ∈ P : ∃C ∈ P, hence
C(i, w) = A(i) is a verifier for X (w is ignored).

5. Theorem: IS ∈ NP . Proof : construct a polynomial-
time verifier C for IS with input comprising IS problem
instance G = (V,E) and k, candidate IS S ⊆ V to
act as a witness. Then, if |S| ≠ k return F , if for any
v1, v2 ∈ S : {v1, v2} ∈ E, also return F , else T . O(n2)

This checks that S is an IS of size k in G, and if so, S is
a witness that the answer to IS is T , so C is a verifier.

6. Problem X is NP-complete if X ∈ NP and for every
problem Y ∈ NP : Y ≤P X. (X is at least as hard as
every other problem in NP). Definition on the next page.
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Reduction

1. Reduction is a description of how to solve a problem
using a solution for another problem. e.g. reducing from
Find-Min (min int in a sequence) to Find-Max by cre-
ating sequence B = b1..bn s.t. bi = −ai, let m = Find-
Max(B), return −m.

2. In reducing from X to Y , we’re not allowed to know
anything about specific solution to Y : it is a black box,
and is called an oracle for Y .

3. Problem X polynomial-time reduces to problem Y , or
X ≤P Y iff any instance of X can be solved using: Pol.
number of calls to oracle for Y + Pol. number of stan-
dard compute steps. All instances of Y are Pol. size.
Can say that X is at most polynomially harder than Y .
(X ≤P Y ) ∧ (Y ≤P X)→ X ≡P Y Pol. time equivalent.

4. Theorem: (X ≤P Y ) ∧ (Y ∈ P )→ X ∈ P
Corollary: (X ≤P Y ) ∧ (X /∈ P )→ Y /∈ P

Vertex-Cover

1. Vertex cover in G is set of vertices s.t. every edge in G
has at least one endpoint in the set. Given an undirected
graph G = (V,E) and int k, does there exist set S ⊆ V
s.t. |S| = k and every edge in G has ≥ 1 endpoint in S?

2. Theorem: Complement of vertex cover (G \ V -C) is IS.
Corollary: Graph with n vertices has IS of size k iff it
has vertex cover of size n− k.
Corollary: complement of vertex cover of min. size is
IS of maximum size.

CNF, SAT

1. Literal is either a variable or its negation: x or ¬x.
Clause is a disjunction (OR) of literals: x ∨ y.

2. A formula is in conjunctive normal form (CNF) if
it’s a outermost conjunction of clauses (AND/OR):
(x ∨ y) ∧ (a ∨ ¬b)

3. Theorem: Every boolean formula ϕ has equivalent for-
mula ϕ′ in CNF.

4. Boolean Satisfiability problem (SAT): given boolean
formula ϕ in CNF, is there an assignment of values to
variables that makes ϕ =YES? If so, ϕ is satisfiable.

5. Theorem: SAT is NP-complete.

6. k-SAT problem is SAT where each clause in ϕ has at
most k literals.

7. Theorem: 1-SAT is O(n), 2-SAT ∈ P , 3-SAT is NP-
complete.

8. Theorem: IS is NP-complete. Proof : IS ∈ NP, prove
that any one NP-complete problem can be reduced from
3-SAT to it.

NP-completeness of IS

1. Theorem: Independent Set (IS) is NP-complete.
Show IS ∈ NP. Witness for IS is an IS X of size k in G.

Can efficiently check it’s a witness by: Confirming it’s of
size k O(1), and Checking ∀v, v′ ∈ X : {v, v′} /∈ E O(n2)

Show NP ≤p IS by showing NP ≤p 3-SAT ≤p IS. Sup-
pose have 3-SAT instance ϕ. Then construct graph G as
follows: For each literal create vertex, connect conflicting
(x,¬x) literals or those in some clause by an edge.

v11 v13

v12

vk1 vk3

vk2

Return IS(G,k). Proof of correctness: Assume ϕ is
satisfiable, then ∃ some assignment A to ϕ s.t. ϕ(A) =
True. Then at least one literal ∈ A clause is True. Select
one true literal from each clause, then corresponding ver-
tices form an IS.

Suppose ∃ IS of size k, then each vertex is in a different
clause and no two are connected by a conflict edge. As-
sign True to literals that have vertices in IS. Then ϕ is
True under that assignment.

Set-Cover, NP problems

1. Set-Cover problem: given set X, powerset S ⊆ P(X)
and int k ≤ |S|, is there a set S′ ⊆ S of size k s.t.
∪S′ = X? Can cover the whole universe with subsets?

2. Theorem: Set-Cover is NP-complete. Proof : by
reduction from vertex-cover to set-cover. For graph
G = (V,E), set X = V ;S = outEdgei for i

th vertex.

3. Boolean Programming: subset of integer program-
ming where a solution for each variable ∈ {0, 1} for some
set of constraints.

4. Feedback arc/node set f if (V,E \ f) or for node set:
(V \ f,E) is acyclic.

5. Graph colouring: colour edges of a graph s.t. no two
of the same colour are incident.
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6. Hamiltonian cycle: visit every node exactly once and
return to the same point.

7. Hitting set: choose least amount of subsets s.t. every
value appears in all sets.

8. Steiner-tree: find an MST for a set S ⊆ V .

9. Hypergraph Matching: matching problem with edges
each containing 3 vertices.

10.Exact-cover: non-overlapping set cover.

11. Job-Sequencing: matching numerous schedules.

12.Clique-cover - clique is opposite of independent set
in that every vertex is adjacent to every other vertex.
Clique cover - finding clique of size k.

13.Max-cut - finding a cut of maximum size in a graph.

14. SAT/3-SAT

15. Set-packing: select k pairwise exclusive subsets.

16.Partition: split a set into two s.t. their sums are equal.

17. Subset-sum given a set S and a number n, check
whether ∃ subset S′ s.t. sum(S′) = n.

18.READ THE WIKI PAGE ABOUT EACH ONE

EXPTIME

1. Corollary There are no known problems that are in NP
but definitely harder than P.

2. Problem is in EXPTIME (EXP) iff it admits an algo-
rithm that can solve it in time O(2f(n)) where f(n) is
some polynomial of n.

3. Theorem: 3-SAT is in EXPTIME. Proof : num of vari-
ables is O(n) in size n of the instance, and each can be
assigned T,F. So, there are at most 2n possible assign-
ments, each can be checked in polynomial time. So the
complete algorithm for 3-SAT is: generate each possibil-
ity in turn and check them until the term evaluates to
T. It runs in time O(2f(n) × nk) ≤ O(2g(n)).

4. Theorem: NP ⊆ EXPTIME. Proof : Let problem
X ∈ NP. Since 3-SAT is NP-complete, there exists
polynomial-time reduction from X to 3-SAT, which is in
EXPTIME, so X can be solved in at most O(2g(n) × nl)
= O(2h(n)) time, so X ∈ EXPTIME.

5. Corollary: above algorithm uses polynomial space, so
NP ⊆ PSPACE - total needed amount of memory is
bounded by a polynomial.

6. Restricting possible inputs to a problem makes it easier
to solve. Hence, Tree-IS is in P.

7. Given a tree T and number k, how to determine whether
an IS exists of size k? Start at leaves and work up to the
root. Algorithm: if T is empty, return k = 0, else set
S = 0, while T has ≥ 1 edge and |S| < k: select any leaf
v ∈ T and the edge (u, v) incident to v, set S = S ∪ {v}.
Delete u, v and all edges incident to u, v from T . Let S′

be the union of S and all remaining vertices in T . Re-
turn S′ ≥ k.

8. Fixed Parameter Tractability (FPT): fixing some
parameter of the problem makes it tractable.

Flow Networks

1. Flow Network is a 5-tuple (V,E, s, t, c) of vertices,
edges (ordered pairs), s ∈ V source vertex, t ∈ V sink
vertex and c : E → R+ capacity function. Enforce
degin(s) = 0, degout(t) = 0.

2. Flow is an assignment of number f(e) ∈ R+ to each
edge e ∈ E s.t. ∀e ∈ E : f(e) ≤ c(e) and ∀v ∈ V \ {s, t}:
the flow conservation aka Kirchoff constraint holds:∑

(u,v)∈E

f((u, v)) =
∑

(v,u∈E)

f((v, u))

or total in = total out.

3. An s-t cut is a partition (A,B) of V s.t. s ∈ A, t ∈ B.
Capacity of an s-t cut (A,B) is the sum of capacities of
edges from A to B: c((A,B)) =

∑
(u,v)∈E c((u, v)) given

u ∈ A, v ∈ B, back edges from B to A are ignored.

4. Min-Cut (search) problem: given flow network N , find
an s-t cut C s.t. capacity of C is minimal for N .

5. Max-Flow problem: given flow network N , find a flow
f s.t. value of f is maximal for N . Value of f is the sum
of the net flow out of s (second sum is usually 0), or the
maximum total ”volume” going through the network:

val(f) =
∑

(s,v,)∈E

f((s, v))−
∑

(v,s,)∈E

f((v, s))

6. Given any cut the net flow doesn’t change (flow value
lemma)

7. Max-flow greedy augmenting path algorithm:
start with flow value 0 everywhere, consider s⇝ t paths,
”spend” the minimum remaining capacity of edges along
that path. But may produce wrong paths: if optimal
and sub-optimal paths share some part, and you en-
counter the sub-optimal one first - you ”spend” your
capacity on it, hence preventing from choosing the opti-
mal path, so incorrect.
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8. Residual path: a p = s ⇝ t path with positive resid-
ual capacity, or the min free capacity along that path.

9. Residual network: ∀e ∈ E and capacity ci, it con-
tains a forward edge with remaining capacity r, and
reverse edge with used capacity ci − r. When consider
new paths, can now ”take back” some of the ”spent”
flow, hence allowing for optimal solution.

10.Ford-Fulkerson Algorithm finds max-flow in network
N . Start with flow of 0 everywhere, while ∃ an augment-
ing path p = s⇝ t in the residual network of N :
Let c be min edge weight along p, for each forward edge
in p, increase its flow by c, and decrease by c for each re-
verse edge. Update the residual network accordingly.

11. Ford-Fulkerson: if augmenting path doesn’t have re-
verse edges - it augments the network, if has at least one
reverse edge, it reduces flow along some edges and reallo-
cates it to others.
Since the path chosen was augmenting, it must still in-
crease the flow overall. Doesn’t get stuck in bad choices.
Can use DFS O(|E|) at most O(

∑
c) times if augmenting

by 1, so overall runtime: O(|E| ×
∑

c), but exponential
in input size (magnitude of the numbers). If weights are
real-valued - might never terminate.

12.Net-flow across an s-t cut (A,B) is the sum of flow
values of all edges from A to B, minus the sum of those
from B to A.

13.Flow Value Lemma: let f be any flow in flow net-
work N , and let (A,B) be any s-t cut in N . Then, the
value of f equals to net flow across the cut (A,B). Any
”slice” between the source and the sink has ”all the wa-
ter” going through the system.

f =
∑
s⇝e

f(e)−
∑
e⇝s

f(e) =
∑
v∈A

(∑
v⇝e

f(e)−
∑
e⇝v

f(e)

)

=

(∑
A⇝e

f(e)−
∑
e⇝A

f(e)

)

14.Max-Flow-Min-Cut Theorem: the maximum flow in
N is equal to the minimum capacity s-t cut in N .

Christmas Special

1. A matching M ⊆ E is a set of edges s.t. ∀v ∈ V : |{{
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CheatSheet

Runtime

1. Runtime comparison

lim
n→∞

f(n)

g(n)
:


0→ f(n) = O(g(n))
̸= 0→ f(n) = Θ(g(n))
∞→ f(n) = Ω(g(n))

2. Log rules:

logax =
logbx

logba

alogb c = clogb a

3. Maximum number of nodes on the last level of a k-ary
tree of height h (assume root is level 0), is

kh

4. Total number of nodes for a k-ary tree of height h is:

kh+1 − a

k − 1

Greedy

1. Greedy rule: simple local decision made at each step
(e.g. pick shortest job, earliest deadline, etc.).

2. Invariant: property maintained throughout the algo-
rithm or proof (e.g. greedy’s prefix ≤ optimal’s prefix)

3. Stays-ahead: compare first r steps of greedy vs optimal
ad show greedy’s partial objective is at least as good.

4. Inversion: a local ”bad” pair in a candidate solution
(e.g. two adjacent jobs in wrong order by deadline)

5. Exchange Argument: Find an adjacent inverted
pair, swap them, use an invariant (cost never goes up)
to show each swap keeps us optimal, repeat until you
match the greedy order.

6. Urgency-weighted ratio: given two jobs in a schedule,
sort Rj = ui

ti
in non-increasing order for urgency u and

completion time t to create an optimal schedule.

7. Exchange argument proof template

1. Define greedy strategy: e.g. sort by ui
ti

in non-
increasing order

2. Define an inversion: e.g. ui
ti

>
uj

tj
but i scheduled

after j.

3. Define solutions: e.g. Let X be the greedy solu-
tion of our algorithm, and X∗ be the optimal solu-
tion (schedule).

4. Compare solutions, show that if X ̸= X∗, then

Exchange Argument Proof Template

Let S denote the set of feasible solutions, and let
Φ : S → R be the objective function we wish to min-
imise (or maximise).

1: Define the Greedy Strategy. Clearly state the crite-
rion your greedy algorithm optimises at each step.

Example: Schedule jobs in decreasing order of a key Ki.

2: Define Inversions. Clearly define what it means for a
solution to have an inversion with respect to the greedy
criterion.

Formally, given two adjacent elements i, j in a solution,
we say that the pair (i, j) is an inversion if and only if:

Ki < Kj , yet element i appears before element j.

3: Set up Solutions to Compare. Define explicitly:

•X: The schedule produced by the greedy algorithm.

•X∗: An optimal schedule minimising (or maximis-
ing) the objective Φ.

4: Existence of an Adjacent Inversion. Prove rigor-
ously that if X∗ ̸= X, then X∗ must contain at least one
inversion. Furthermore, show that there always exists at
least one adjacent inversion by considering any existing
inversion and moving step-by-step between jobs until an
adjacent inversion is found.

5: Swap Lemma. Consider an adjacent inversion (i, j) in
the schedule X∗. Evaluate the objective function Φ be-
fore and after swapping these two adjacent elements:

Φ(. . . , i, j, . . . ) versus Φ(. . . , j, i, . . . ).

Demonstrate rigorously that swapping these elements
does not increase the cost (for minimisation problems) or
does not decrease the cost (for maximisation problems):

Φ(. . . , i, j, . . . ) ≥ Φ(. . . , j, i, . . . ).

Conclude that the swap either strictly improves or does
not worsen the solution.

6: Iteration and Optimality. Each swap reduces the
number of inversions by exactly one and does not worsen
the solution quality. Therefore, after finitely many
swaps, the optimal solution X∗ transforms into the
greedy solution X. It follows rigorously that the greedy
solution X is optimal.
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Graphs

1. Cycle property: Let G and T be a graph and its MST.
Let C be any cycle in G. Let f ∈ C be the maximum
cost edge in the cycle. Then, f /∈ T , as it can be ex-
cluded (red edge).

2. Cut property: Let G and T be a graph and its MST.
Let S be any subset of G. Let e ∈ S be the minimum
cost edge with exactly 1 endpoint in S. Then, e ∈ T , as
it can be included (blue edge).

3. MST will remain an MST if you apply the same
monotonically increasing function to each of the edge
weights: e.g. w2, w + 5,

√
w

4. Dijkstra’s: finds shortest distance from start node s to
every other node in non-negatively-weighted (∀e ∈ E :
w[e] ≥ 0) graph G = (V,E).

Maintain known shortest distances d[s, vi] from s to each
node vi ∈ V . At each iteration, choose the shortest dis-
tanced vertex, and use it to find distances from it to
other nodes: d[s, u] = min d[s, vi] + w[vi, u].

Mark visited, continue until all nodes expanded.

Divide and Conquer

1. Recursion tree: T (n) = aT (n/b) + Θ(f(n)) has logb n
levels Li, each containing ai subproblems of size n/bi.
Each subproblem contributes Θ(f(n/bi)) work. Ex-
pand the tree, find the pattern, sum the work per level:
ai ·Θ(f(n/bi)). Sum over all levels to find the total work:

T (n) =

logb n∑
i=0

ai ·Θ
(
f
(n
bi

))
.

2. Telescoping: substitute values of n derived from each
recursive term, rewrite the formula and continue until a
pattern emerges. T (n) = T (n−1)+T (n2 )+Θ(1) becomes

P, NP, Reductions

1. P: PTIME problem, NP: easy-to-check problems,
NP-complete: NP, reducible from any other NP-
complete problem, NP-hard: at least as hard as any
NP-complete, but doesn’t have to be NP.

2. Decision problem X ∈ NP iff ∃ verifier C s.t.:
• C(i, w) takes 2 inputs: problem instance i and a candi-
date witness w.
• C runs in polynomial time.
• If answer to X(i) is NO, then ∀i, w : C(i, w) = NO.
• If answer to X(i) is YES, then ∃ some witness w for i
s.t. C(i, w) = YES.

3. Oracle of a problem Y is a black box, we can only put
inputs and get outputs, not a specific algorithm.

4. Reduction is description of solving a problem via solu-
tion (oracle) to another problem.
X ≤P Y (X polynomial-time reduces to Y ) iff any in-
stance i of X can be solved using polynomial number
of calls to oracle for Y + polynomial number of standard
computational steps.
Instances i′ of Y must be polynomial-sized. Simply,
solve X by solving Y and doing polynomial time of extra
work.

5. X ≤P Y Reduction proof template:
1. Convert problem instance i1 of X into instnce i2 of Y .
2. Prove Correctness: i1 is YES iff i2 is YES:

a) Suppose i1 is YES, then ... i2 is YES.
b) Suppose i2 is YES - ... then i1 is YES.

3. Show that reduction takes PTIME.

6. Problem X is NP-complete if X ∈ NP and every other
NP Y problem is reducible to it ∀Y ∈ NP : Y ≤P X.
Or, if any one NP-complete problem reducible Z ≤P X.

7. Theorem: (X ≤P Y ) ∧ (Y ∈ P )→ X ∈ P
Corollary: (X ≤P Y ) ∧ (X /∈ P )→ Y /∈ P

Prove if A can be solved in PTIME/has PTIME algo-
rithm, then B does: POSITIVE: reduce B ≤P A

Prove if A can’t be solved in PTIME/doesn’t have
PTIME algorithm: NEGATIVE: reduce A ≤P B

8. Packing problems:
• Independent-Set S: ∀(u, v) ∈ E : ¬(u ∈ S ∧ v ∈ S).
Set of vertices s.t. no two vertices are adjacent.

Covering problems:
• Vertex-Cover S: ∀(u, v) ∈ E : u ∈ S ∨ v ∈ S.
Set of vertices touching every edge. Complement of IS.

• Set-Cover: given a set U of n elements, its subsets
S1, ..Sm and a number k, does there exist a collection of
≤ k of these sets whose union is equal to all of U?

Constraint Satisfaction problems:
• k-SAT: is a CNF boolean formula ϕ with clauses of at
most k literals satisfiable?
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