Lecture Notes CS259 - Formal Languages

Intro

 $\mathrm{Sipser}^1,\,\mathrm{Hopcroft}^2$ [1.5]

- 1. Alphabet Σ is finite non-empty set of symbols/letters, so the empty string isn't in it $\epsilon \notin \Sigma$.
- 2. **String/word** w is finite sequence of symbols chosen from some alphabet. **Empty** string ϵ doesn't contain symbols.
- 3. **Define** Σ^k to be set of strings of length k. E.g. $\Sigma = \{0, 1\}$: $\Sigma^0 = \{\epsilon\}, \ \Sigma^1 = \{0, 1\}, \ \Sigma^2 = \{00, 01, 10, 11\}$ etc.

Define $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup ...$ to be a set of all strings over an alphabet Σ . Set of all **non-empty** strings $\Sigma^+ = \Sigma^* \setminus \{\epsilon\}$

- 4. **Length** of string w is denoted by |w|, importantly $|\epsilon| = 0$. **Substring** is a *consecutive* subsequence within a string. **Concatenation** of strings x, y is denoted by xy.
- 5. Language is some $L \subseteq \Sigma^*$. Decision problem is a function $w \in \Sigma^* \to \{\text{Yes}, \text{No}\}$. Not all languages have algorithms.
- 6. Finite Automata/Machine (FA) $\underline{\mathcal{A}} = (Q, \Sigma, \delta, q_0, F)$ is quintuple with finite set of states Q, alphabet Σ , state transition function δ , initial state q_0 and set of all accepting states $F \subseteq Q$.

Deterministic Finite Automata DFA

1. Deterministic Finite Automata/Machine (DFA) is FA with single-choice transition function $\delta: Q \times \Sigma \to Q$

2. Extended transition function $\hat{\delta}: Q \times \Sigma^* \to Q$ says what happens if you start in any state q and follow any sequence of inputs given transition function δ . Define by induction on length of input str w=xa, $|\epsilon|=0$, |xa|=|x|+|a|:

Base Case: $\hat{\delta}(q, \epsilon) = q$. No inputs read, no state change. **I.S.:** $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$ with w = xa, tail recursion.

- 3. Language $L(A) = \{w \in \Sigma^* : \hat{\delta}(q_0, w) \in F\}$ of automaton A is set of all strings w accepted by A, or $q_{final} \in F$. Regular language (RL) is one recognised by some FA.
- 4. Collection of objects in domain D is **closed** under an operation \square if $x_1, x_2 \in D \Rightarrow x_1 \square x_2 \in D$.
 - ¹Introduction to the Theory of Computation, 3rd ed.
 - ²Hopcroft Motwani Ullman 2014

- 5. Let A, B be languages. Class of RL is closed under following for $A = (Q_A, \Sigma, q_A, F_A, \delta_A), B = (Q_B, \Sigma, q_B, F_B, \delta_B)$:
 - Intersection $A \cap B = \{x : x \in A \land x \in B\}$ $M' = (Q_A \times Q_B, \Sigma, (q_A, q_B), F_A \times F_B, \delta')$ where δ' is: $\forall a \in \Sigma, x \in Q_A, y \in Q_B : \underline{\delta'((x, y), a)} = (\delta_A(x, a), \delta_B(y, a))$
 - Union $A \cup B = \{x : x \in A \ \forall x \in B\}$ $M' = (Q_A \times Q_B, \Sigma, (q_A, q_B), (F_A \times Q_B) \cup (Q_A \times F_B), \delta')$ $\forall a \in \Sigma, x \in Q_A, y \in Q_B : \delta'((x, y), a) = (\delta_A(x, a), \delta_B(y, a))$
 - Complementation $\overline{A} = \Sigma^* \setminus A$ $M' = (Q_A, \Sigma, q_A, Q_A \setminus F_A, \delta_A)$
 - Concatenation $A \circ B = \{xy : x \in A \land y \in B\}$ $M' = (Q_A \cup Q_B, \Sigma \cup \{\epsilon\}, \underline{q_A}, \underline{F_B}, \delta')$ where δ' is: $\forall a \in \Sigma, \ x \in Q_A : \ \delta'(x, a) = \delta_A(x, a),$ $\forall a \in \Sigma, \ y \in Q_B : \ \delta'(y, a) = \delta_B(y, a),$ $\forall f \in F_A : \ \delta'(f, \epsilon) = \{q_B\}$
 - Set Difference $A \setminus B = A \cap (\Sigma^* \setminus B)$ $M' = (Q_A \times Q_B, \Sigma, (q_A, q_B), F_A \times (Q_B \setminus F_B), \delta')$ where δ' is: $\forall a \in \Sigma, x \in Q_A, y \in Q_B : \overline{\delta'((x, y), a)} = (\delta_A(x, a), \delta_B(y, a))$
 - Kleene Star $A^* = \{x_1x_2 \cdots x_k : x_i \in A, k \geq 0\}$ $M' = (Q_A \cup \{q_s\}, \Sigma \cup \{\epsilon\}, \underline{q_s}, \underline{F_A \cup \{q_s\}}, \delta')$ where δ' is: $\forall a \in \Sigma, \ q \in Q_A : \ \delta'(q, a) = \overline{\delta_A(q, a)},$ $\delta'(q_s, \epsilon) = \{q_A\},$ $\forall f \in F_A : \ \delta'(f, \epsilon) = \{q_A, q_s\}$

Nondeterministic Finite Automata NFA

1. NFA's are more succinct than and can always be converted/compiled into DFA's - both accept same class of RL's.

- 2. $\forall w \in \Sigma$ a DFA has exactly 1 transition out of a state whereas NFA can have 0, 1 or multiple, hence the transition function $\delta: Q \times \Sigma_{\epsilon} \to 2^Q$ where $\Sigma_{\epsilon} = (\Sigma \cup \{\epsilon\})$.
- 3. Extended transition function $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ also defined by induction on length of input string w = xa:

Base Case: $\hat{\delta}(q, \epsilon) = q$. No inputs read, no state change. **I.S.:** $\hat{\delta}(q, w) = \bigcup_{i=1}^{k} \delta(p_i, a)$, where $\hat{\delta}(q, x) = \{p_1, ..., p_k\}$

Informally, find $\hat{\delta}(q, w)$ by first computing left part $\delta(q, x)$, and for each resulting state p_i , finding $\hat{\delta}(p_i, a)$ where a is last symbol of w.

- 4. Language of NFA $L(A) = \{w : \hat{\delta}(q_0, w) \cap F \neq \emptyset\}$ NFA $A = (Q, \Sigma, \delta, q_0, F)$ accepts str $w = w_1 w_2 \cdots w_m \in \Sigma$ if it's possible to make any sequence of choices of next state $q_0, q_1, ..., q_m \in Q$ while reading chars $w_i \in w$, where $q_{i+1} \in \delta(q_i, w_{i+1})$ and go from start state q_0 to any accepting state $q_m \in F$. \exists accepting run on word w.
- 5. **Theorem**: Every NFA has an equivalent DFA. +: Language regular iff recognised by some NFA. +: DFA \mathcal{D} constructed from NFA $\mathcal{N} \Rightarrow L(\mathcal{D}) = L(\mathcal{N})$ $\frac{\text{NFA } \mathcal{N} = (Q, \Sigma, \delta, q_0, F) \rightarrow \text{DFA } \mathcal{D} = (2^Q, \Sigma, \delta', \{q_0\}, F'\}}{\text{where } \delta'(R, a) = \bigcup_{r \in R} \delta(r, a) \text{ for set } R \subseteq Q \text{ of original states, } F' = \{R \subseteq 2^Q : R \cap F \neq \varnothing\} \text{ contains accept state.}$

Epsilon-Closure (EClose/ ϵ -Close)

- 1. **Epsilon-transition** $\delta(q, \epsilon)$ denotes empty-string transition yielding unconditionally reachable states. Useful for proving equivalence of RL classes.
- 2. ϵ -NFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ but with $\delta(q, w_i \in \Sigma \cup \{\epsilon\})$ which can accept any character including an empty string.
- 3. Epsilon-Closure **EClose**(q): $Q \to 2^Q$ recursively defines all states reachable from q with ϵ -transitions alone:

Base Case: state $q \in EClose(q)$ (stays itself) I.S.: if state $p \in EClose(q)$ and \exists transition $\delta(p, \epsilon) = R$ of all reachable states r_i then $\forall r_i \in R : r_i \in EClose(q)$.

4. ϵ -NFA extended transition func. $\hat{\delta}(q, w) : Q \times \Sigma^* \to 2^Q$ produces all states $R \subseteq Q$ to which \exists a **run** from state q upon reading **string** w = xa with nonempty last char $a \in \Sigma \neq \epsilon$.

Base Base: $\forall q \in Q : \hat{\delta}(q, \epsilon) = \text{EClose}(q)$ (by definition). **I.H.:** let $\hat{\delta}(q, x) = P$ of states reachable from q by following sequence x and $\bigcup_{i=1}^k \hat{\delta}(p_i \in P, a) = R$ of states reachable from previous step following final non-empty input a. Finally, define $\hat{\delta}(q, w) = \bigcup_{j=1}^m \text{EClose}(r_j \in R)$.

- 5. **Theorem**: Every ϵ -NFA has an equivalent DFA. $Q' \subseteq Q$ ϵ -NFA $\mathcal{E} = (Q, \Sigma, \delta, q_0, F) \to \text{DFA } \mathcal{D} = (Q', \Sigma, \delta q_0, F')$.
- 6. **Theorem**: For every ϵ -free NFA $N = (Q, \sigma, q_0, F, \delta)$: \exists DFA $D = (2^Q, \Sigma, \text{EClose}(q_0), F_D, \delta_D)$ s.t. L(N) = L(D). **Proof**: Given $S_D : 2^Q \times \Sigma \to 2^Q$ take $a \in \Sigma, S \in 2^Q$ ($S \subseteq Q$), suppose $S = \{s_1, ..., s_m\}$, then $\delta_D(S, a) = \bigcup_{i=1}^m \delta(s_i, a)$. Now, $F_D = \{A \subseteq Q : A \cap F \neq \emptyset\}$.

Regular Expressions (RegEx)

1. Regular expression $R \in \{a \in \Sigma, \epsilon, \varnothing, R_1 + R_2, R_1 \circ R_2, R_1^*\}$. Order of operations: 1. Kleene * 2. Concat \circ 3. Union +. E.g. "all languages with second to last character being 1" is $(0+1)^* \circ 1 \circ (0+1)$.

- 2. **Remember**: ϵ represents a language containing only the empty string, \varnothing represents the language that doesn't contain any strings. Empty word ϵ is **something**, empty state \varnothing is **nothing**, hence $L(R \circ \epsilon) = L(R)$, but $L(R \circ \varnothing) = \varnothing$.
- 3. Remember: Languages L contain strings, alphabets Σ contain symbols, so $L^1 \neq \Sigma^1$ but $(L^1)^*$ and $(\Sigma^1)^*$ denote the same language. Remember: $L(\emptyset^*) = \{\epsilon\}$
- 4. **Kleene star/plus** ()*/+ creates any number k of concatenated ordered values $A^* = \{x_1, x_2, ... x_k : k \ge 0/1, \forall x_1 \in A\}$ or infinite union $A^* = A^0 \cup A^1 ... \cup A^k$. But finite $\emptyset^* = \{\epsilon\}$.
- 5. **Token** is elemental object of programming language (keywords: if, else ..; vars; integers etc.) E.g. Integers: $("+"+"-"+\epsilon) \circ (1+2+...+9) \circ (0+1+...+9)^*$.
- 6. **Theorem**: Language is regular iff some regular expression describes (generates) it. NFA \equiv DFA \equiv RegEx.
- 7. Regex \rightarrow NFA: node \circ , accepting \bullet
 - $L(R) = \{a\} \text{ if } R = a \in \Sigma$ $\rightarrow \circ \stackrel{a}{\rightarrow} \bullet$
 - $L(R) = \{\epsilon\} \text{ if } R = \epsilon$ \rightarrow •
 - $L(R) = \emptyset$ if $R = \emptyset$
 - $L(R) = L(R_1) \cup L(R_2)$ if $R = R_1 + R_2$ $\rightarrow \circ \stackrel{\epsilon}{\rightarrow} N_1, N_2$
 - $L(R) = L(R_1) \circ L(R_2)$ if $R = R_1 \circ R_2$ $N_1 \stackrel{\epsilon}{\to} N_2$
 - $\bullet L(R) = (L(R_1))^* \text{ if } R_1^* \qquad \bullet \xrightarrow{\epsilon} N_1 \xleftarrow{\epsilon} \bullet_1, \bullet_2...$
- 8. Convert NFA/DFA \rightarrow RegEx: (see GNFA)
 - 1. add q_{start} , q_{final} without changing automaton
 - 2. eliminate non-final and non-start states
 - 3. eliminate q_{final}

Generalised NFA (GNFA)

- 1. **GNFA** $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{final}})$ is an NFA where each transition may have any RegEx $r_i \in \mathcal{R}$ as label instead of just Σ_{ϵ} members. Transition $\delta : (Q \setminus \{q_{\text{final}}\}) \times (Q \setminus \{q_{\text{start}}\}) \to \mathcal{R}$ where \mathcal{R} is set of all RegEx over the alphabet.
- 2. GNFA has unique q_{final} state (**sink**): \nexists transitions to any other state, q_{start} state (**source**): no transitions to start state. Otherwise \exists pairwise transition between **all** states.
- 3. Convert **DFA** \rightarrow **GNFA**: $q'_{\text{start}} \rightarrow_{\epsilon} q_{\text{start}} \rightarrow \dots$
 - 1. add new q'_{start} with ϵ -transition to q_{start} .
 - 2. add new q'_{final} with ϵ -transition reachable from q_{final} .
 - 3. replace pairwise multi-transitions with single transition
 - 4. Add \(\varnothing \) transit. between pairs requiring but missing one
- 4. Convert **GNFA** \rightarrow **RegEx**: Assume GNFA has $k \geq$ states since have unique $q_{\text{start}}, q_{\text{final}}$. Determine regex and replace with current transition:

If k > 2: construct equivalent GNFA with k - 1 states removing a non-edge state, repeat until k = 2 resulting in RegEx R equivalent to original DFA.

- 5. To remove non-edge state, remove path $p_1 \to q \to p_2$ s.t. $\forall (q_{\alpha}, q_{\beta}) \in (Q \setminus \{q_{\text{final}}, q_1\}) \times (Q \setminus \{q_{\text{start}}, q_1\})$, and have new: $\delta'(q_{\alpha}, q_{\beta}) = \delta(q_{\alpha}, q_{\beta}) + \delta(q_{\alpha}, q_1) \cdot \delta(q_1, q_1)^* \cdot \delta(q_1, q_{\beta})$
- 6. GNFA accepts string $w \in \Sigma^*$ if $w = w_1 \cdot w_2 \cdots w_k$ where $\forall w_i \in \Sigma^*$ and a sequence of states $q_0, ..., q_k$ exists s.t. $q_0 = q_{\text{start}}, q_k = q_{\text{final}}$ and for each $i : w_i \in L(R_i)$ where $R_i = \delta(q_{i-1}, q_i)$.
- 7. Claim: For any GNFA G the RegEx produced by above method is equivalent to G.

Proof: by induction on k states in G. Base case: k=2, I.H.: assume true for k-1 that G on k states accepts w, then \exists sequence $q_{\text{start}}, q_1, ...q_{\text{final}}$ that w uses. If removed state q is not part of it then new k-1 automaton accepts the same word. If q appears as $p_1qq...p_2$ then removing qs and considering new k-1 automaton doesn't change word being accepted since $p_1 \to p_2$ now encapsulates q.

Non-Regularity & Myhil-Nerode

- 1. Strings $x, y \in \Sigma^*$ are **distinguishable** by language $L \in \Sigma^*$ if $\exists w \in \Sigma^*$ s.t. there's only one of xw or yw in L.
- 2. Lemma: Indistinguishability \equiv_L is an equivalence relation on Σ^* . Strings x, y indistinguishable by L if $x \equiv_L y$.
- 3. Index of \equiv_L is the number of its equivalence classes.
- 4. **Myhil–Nerode Theorem**: Let $L \subseteq \Sigma^*, k \in \mathbb{Z}^+$, then \equiv_L has at most k equivalence classes iff $L = L(\mathcal{A})$ for some DFA \mathcal{A} with at most k states.

Corollary: $L \subseteq \Sigma^*$ is regular iff \equiv_L has finite index, otherwise L is a non-regular language.

5. All strings $a^n, n \in \mathbb{Z}$ are distinguishable because $a^i b^i \in L$ but $a^j b^i \in L$ iff i = j, so it doesn't always hold.

Proof: given L, DFA $\mathcal{A} = (Q, \Sigma, q_0, F, \delta)$, $Q = \{q_1, ..., q_n\}$. For $x, y \in \Sigma^* : x \sim y$ if $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$ (arrive at the same state from both). So, $\sim_{\mathcal{A}}$ is equiv relation on Σ^* , hence $x \sim_{\mathcal{A}} y \Rightarrow x \equiv_L y$.

- To prove that language L is non-regular need to

 (1) provide infinite set of strings and
 (2) prove that they are pairwise distinguishable by L
 - (2) prove that they are pairwise distinguishable by L. This will show that they must all lie in distinct equivolasses of \equiv_L , so \equiv_L must have an infinite number of equivalence classes, so it's non-regular.
- 7. To prove that language L is $\mathbf{regular}$, it suffices to (1) describe the equivalence relation \equiv_L on Σ^* , and (2) show that there are finitely many equivalence classes. Then, by the Myhill-Nerode theorem, L is regular. Or just construct DFA/NFA/Regex accepting L.

Non-Regularity & Pumping Lemma

- 1. **Pigeonhole principle**: if n pigeons are placed into $m \leq n$ holes, then some hole has to have more than 1 pigeon in it.
- 2. For DFA \mathcal{A} : \exists a **cycle** reachable from the start state q_{start} that can reach the accept state q_{final} iff $L(\mathcal{A})$ is infinite. Equivalently, there must exist a string $w \in L(\mathcal{A})$ of length

Equivalently, there must exist a string $w \in L(\mathcal{A})$ of lengt |w| > |Q| (# states in \mathcal{A}) to create that loop.

- 3. **Pumping Lemma**: Let L be a regular language. Then \exists **pumping length** $p \in \mathbb{Z}^+$ s.t. to account for the loop, any string $w \in L$ with $|w| \geq p$ can be **pumped** (rewritten) as w = xyz, where
 - 1. $\forall i \geq 0 : xy^iz \in L(\mathcal{A})$: middle part y can be repeated any number of times i and remain in the language of \mathcal{A} .
 - **2.** |y| > 0, $y \neq \epsilon$: middle part cannot be empty, however either x or z may be empty (ϵ) .
 - **3.** $|xy| \le p$.

- 4. FAs have **finite memory**, so non-regular languages use infinite memory and often involve **counting**.
- 5. Pumping Lemma proof that L is non-regular:
 - 1. Suppose L is regular and let p be L's pumping length.
 - **2.** Choose a string $w \in L$ s.t. $|w| \ge p$.
 - **3.** Let w = xyz be an arbitrary decomposition of w s.t. $|xy| \le p$ and |y| > 0.
 - **4.** Find such decomposition, e.g. $x = 0^{\alpha}, y = 0^{\beta}, z = 0^{\gamma}1^{p}$ where $\alpha + \beta + \gamma = p, \beta > 0$ and $\alpha + \beta \leq p$
 - **5.** Pick integer i and argue that $xy^iz \notin L$. \square
- 6. Myhill-Nerode proof that L is non-regular:
 - 1. Suppose, for contradiction, that L is regular.
 - **2.** Consider distinguishing set $S = \{s_n : n \in \mathbb{N}\}$ over Σ^* . I.e. words to be told apart. E.g. $S = \{a^n | n \geq 1\}$.
 - **3.** For any two distinct $s_m, s_n \in S$ with $m \neq n$, find a distinguishing string z such that exactly one of $s_m z$ or $s_n z$ is in L. E.g. $z = \{b^n\}$ s.t. $a^n b^n \in L$ but $a^m b^n \notin L$.
 - **4.** Conclude that S is an infinite set of pairwise distinguishable strings, so there are infinitely many equivalence classes of \equiv_L .
 - **5.** By the Myhill-Nerode theorem, L cannot be regular.
- 7. Language L satisfying the Pumping Lemma is not necessarily regular!

Decision Problems

- 1. **Emptiness**: In: DFA A. Out: whether $L(A) = \emptyset$. How: Perform BFS from the start state q_0 to see if any accepting state is reachable.
- 2. **Inclusion**: In: DFA A_1, A_2 . Out: if $L(A_1) \subseteq L(A_2)$. How: Check if $L(A_1) \cap L(\overline{A_2}) = \emptyset$.
- 3. **Membership**: In: DFA A, alphabet Σ , word $w \in \Sigma^*$. Out: whether $(w \in \Sigma^*) \in L(A)$.

How: Simulate A on w (complexity $O(|E| \cdot |w|)$), where |E| is the number of states/transitions).

Context-free languages (CFL)

- 1. **Production** or **Rule** $\alpha \to \beta$ is a pair $(\alpha, \beta) \in R$, or line in the grammar that defines transformations for variables. Both $\alpha \neq \epsilon, \beta \in (V \cup \Sigma)^*$ therefore set of productions $R \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$ must be finite, (+) because $\alpha \neq \epsilon$
- 2. **Grammar** $G = (V, \Sigma, R, S)$ with finite mutually-exclusive sets V of variables (nonterminal symbols) and Σ of terminal symbols. R is the finite set of production rules, $S \in V$ is the START variable ("axiom").
- 3. Context-Free Grammar (CFG): for every production the start point is within original V, or $\forall (\alpha, \beta) \in R : \alpha \in V$
- 4. For $x,y \in \Sigma^*$, write "x yields y": $\alpha \Rightarrow \beta$ if α can be rewritten as β by applying a production rule $(\alpha,\beta) \in R$. e.g. $G = (\{S\}, \{0,1\}, R, S)$ rules $R : S \to 0S1$; and $S \to \epsilon$, giving $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 0011$
- 5. "x derives y": $x \stackrel{*}{\Rightarrow} y$ iff \exists finite sequence $x_0, x_1, ... x_k, k \ge 0$ s.t. $x_0 = x, x_k = y$ and $\forall i = 0, 1, ..., k 1 : x_i \Rightarrow x_{i+1}$, or if y is derivable from x by some sequence of productions. $\stackrel{*}{\Rightarrow}$ is also a reflexive and transitive closure of \Rightarrow .
- 6. Language of a grammar $L(G) = \{w \in \Sigma^* : S \stackrel{*}{\Rightarrow} w\}$ is the set of all strings in Σ^* which can be derived from S using finitely many applications of production rules in G.
- 7. Parse Tree is like DFS tree of possible grammars' values

Left-most derivation: yields the "left-most" non-terminating variable at each step. E.g. 1A10B would have to expand (yield) non-terminal A first.

- 8. **Ambiguous** grammar G iff there are ≥ 2 parse trees for some $w \in L(G) \Leftrightarrow$ there are ≥ 2 leftmost derivations for some $w \in L(G)$. I.e. can generate the same string with multiple parse trees. **Inherently ambiguous** G if every possible CFG that generates this language is ambiguous. I.e. can't rewrite as an equivalent unambiguous grammar.
- 9. Chomsky Hierarchy of Grammars:

Type 3: Regular Right linear $A \to xB$ and Left linear $A \to Bx$, and possibly terminal $A \to x$.

Type 2: Context-free $Q \to w$

Type 1: Context-sensitive $\alpha A \gamma \rightarrow \alpha \beta \gamma$

Type 0: Recursively-enumerable $a \to \beta$ if α non-empty. For variables $A, B \in V$, combinations of V-variables and Σ -characters $\alpha, \beta, \gamma, w \in (V \cup \Sigma)^*$; terminal string $x \in \Sigma^*$.

- 10. Strictly Right/Left-linear grammar has $y \in \Sigma \cup \{\epsilon\}$, NOT Σ^* . Have $T \to yB/By/y$.
- 11. **DFA** \rightarrow **CFG**: convert DFA \mathcal{A} into equivalent CFG:
 - 1. Make variable R_i for each state $q_i \in \mathcal{A}$ with start variable R_0 of the grammar representing q_0 start state of \mathcal{A} .
 - **2.** Add rule $R_i \to aR_j$ to the CFG if $\delta(q_i, a) = q_j$ is a transition in \mathcal{A} (express transition rules as productions).
 - **3.** Add rule $R_i \to \epsilon$ if q_i is an accept state of the DFA \mathcal{A} .

DFA \rightarrow strictly right-linear grammar: for each state q: all strings that will take me from q to a final state

DFA \rightarrow strictly left-linear grammar: for each state q: all strings that will take me to q from start state

Push-Down Automata (PDA)

- 1. Push-Down Automaton (PDA) $\mathcal{P} = (Q, \Sigma, \Gamma, q_0, F, \delta)$ has a stack Γ that is like a "to-do list" of the automaton. Importantly, it is **nondeterministic** (NFA with a stack).
- 2. Configuration of a PDA $A = (Q, \Sigma, \Gamma, q_0, F, \delta)$ is a pair $(q, s) \in Q \times \Gamma^*$, where q is the current state and s is current stack content (with the top of the stack at the left).
- 3. Transition function $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma^{*})$. The pair $(q', \gamma') \in \delta(q, a, \gamma)$ means a $a, \gamma \to \gamma'$ transition of:
 - **1.** start in state $q \in Q$.
 - **2.** consume next input symbol (condition) $a \in \Sigma_{\epsilon}$
 - **3.** pop $\gamma \in \Gamma_{\epsilon}$ from the top of the stack
 - **4.** push a string $\gamma' \in \Gamma^*$ on top of the stack
 - **5.** end up in state $q' \in Q$.
- 4. A **run** of PDA $A = (Q, \Sigma, \Gamma, q_0, F, \delta)$ on $w \in \Sigma^*$ is a sequence of configurations $(q_0, s_0), ...(q_m, s_m)$ where $(q_i, s_i) \in Q \times \Gamma^*$ for which there exist $w_1, ...w_m \in \Sigma_{\epsilon}$ s.t.t $w_1, ...w_m = w$ and moreover $s_0 = \epsilon$; and for i = 1, ...m, it holds that $s_{i-1} = \gamma s', s_i \gamma' s'$ for $s' \in \Gamma^*$.

5. **Read** ϵ : move without reading next symbol in input. **Push** ϵ : don't push anything on the stack.

Pop ϵ : don't pop anything from the stack.

6. Theorem (CFG \to PDA): CFG $G=(V, \Sigma, R, S)$ & PDA $P=(Q, \Sigma, \Gamma, q_0, F, \delta)$ recognise same lang : L(P)=L(G). Stack $\Gamma = V \cup \Sigma \cup \{\bot\}$, where $\bot \notin V \cup \Sigma$.

 $\operatorname{Push}(\bot)$, $\operatorname{Push}(S)$ then for each rule $A \to \alpha$ in R: $\operatorname{pop}(A)$, $\operatorname{push}(\alpha_k)$... $\operatorname{push}(\alpha_1)$, $\operatorname{upside-down}$ to keep the stack order. Finally, to accept, $\operatorname{Pop}(\bot)$.

- 7. Normalised PDA P:
 - 1. P has a unique accepting state q_{final}
 - **2.** P empties its stack before accepting (\bot) .
 - **3.** Whenever $(q', \gamma') \in \delta(q, a, \gamma)$, either $\gamma = \epsilon \vee \gamma' = \epsilon$: either push or pop, but not both.
- 8. **Theorem (PDA** \rightarrow **CFG)**: For every **normalised** PDA P, there \exists CFG G s.t. L(P) = L(G). Construction proof:
 - Vocabulary $V = \{A_{pq} : p, q \in Q\}$
 - Start variable $s = A_{if}$ with initial i and final f rules.
 - Rules R, $\forall r, p, q \in Q : A_{pq} \to A_{pr}A_{rq}$ in Q^2 .

1.
$$A_{pq} \to A_{pr} A_{rq}$$
 $\circ_p \leadsto \circ_q \equiv \circ_p \leadsto \circ_r \leadsto \circ_q$

2.
$$A_{pq} \to a A_{p'q'} b$$
 $\circ_p \leadsto \circ_q \equiv \circ_p \leadsto_{+\gamma} \leadsto \circ_{p'} \leadsto \circ_{q'} \leadsto_{-\gamma} \circ_q$

3.
$$A_{pq} \to a$$
 $\circ_p \leadsto_a \circ_q \equiv a$: reach q from p with a

4.
$$A_{pp} \to \epsilon$$
 $\circ_p \leadsto_{\epsilon} \circ_p \equiv \epsilon$: reach p from p with ϵ

context free

1. **Theorem**: for every CFG G there is a CFG G' in CNF s.t. L(G)=L(G').

Proof (Algorithm): $u, v, w \in V \cup \Sigma$ var \land / \lor terminal

- 1. Add new start variable S_0 and rule $S_0 \to S$ s.t. S_0 doesn't appear on the RHS.
- **2.** Remove each ϵ -rule of form $A \to \epsilon$ where $A \neq S_0$. Now add all possible substitutions of $A = \epsilon$ to R, e.g.

if $R \to uAvAw$, then add 3 rules: uAvw, uvAw, uvWRemember about transitivity: unless removed before,

whenever $A \to B \to \epsilon$ appears, add $A \to \epsilon$

3. Remove all unit rules $A \rightarrow B$, then

whenever $B \to u$ appears, add $A \to u$

4. Finally, replace all rules $A \to u_1, u_2...u_k : k \ge 3$, where each u_i is var/terminal, with rules

$$A \to u_1 A_1, \quad A_1 \to u_2 A_2 \quad \dots \quad A_{k-2} \to u_{k-1} u_k$$

5. Replace any terminal u_i in preceding rules with new variable U_i and add rule $U_i \to u_i$.

e.g.
$$R \to aB \Rightarrow R \to U_1B$$
, $U_1 \to a$

- 2. Grammar *G* is in **Chomsky Normal Form (CNF)** if all rules/productions have the form:
 - 1. $A \to BC$ $A, B, C \in V$ 2. $A \to a$ $a \in \Sigma$

Where $B, C \neq S$ (start var); also $S \to \epsilon$ is permitted.

- 3. **Theorem**: there is an algorithm which given a CFG G in CNF and string $w \in \Sigma^*$ determines whether $w \in L(G)$ in time $O(|G| \times |w|^3)$.
- 4. Cocke-Younger-Kasami (CYK) bottom up parsing algorithm for CFG $G = (V, \Sigma, R, S)$ in CNF:

- 5. **CFL Pumping Lemma**: Let L be a CFL. Then \exists **pumping length** $p \in \mathbb{Z}^+$ s.t. $\forall w \in L$ with $|w| \geq p$ can be decomposed as $w = uvxyz \in \Sigma^*$, where
 - 1. $uv^i x y^i z \in L$ for all $i \geq 0$
 - **2.** $|vy| \ge 1$
 - 3. $|vxy| \leq p$

Pumping Lemma	Modified to:
If L=2* is regular, then there exists p>1 st. for all wel	If LEE* is a CFL,
of length >0 there exists decomposition	then there exists p≥1 st. for all wc/ of length ≥p there exist decomposition w.v,x,y,ze∑*s.t. w=wxyz and:
x,y,z εξ* s.t. w=xyz and: Oxyiz ε L for i > 0;	Ouvixyize L for i > 0;
② !ષ્ર! ર : ③ !ત્રષ્ટ્રોક ૄે .	(3) vxy ≤ ρ.

Proof:

- Given the smallest parse tree of $w \in L(G)$, no path from root to a leaf may repeat a non-terminal, and such a path has $\leq |V|$ edges.
- If all rules have $\leq b$ symbols on the right, then such tree yields $|w| \leq b^{|V|}$.

Don't forget about **cases!**

e.g. $L = \{a^n b^n c^n : n \ge 0\}$: consider cases: $1.vwx \subseteq a^p$, $2.vwx \subseteq b^p$, $3. vwx \subseteq c^p$, $4. vwx \subseteq a^p b^p$, $5. vwx \subseteq b^p c^p$

6. Family of CFL is closed under Union ∪, Kleene *, and concatenation, but NOT intersection \cap or complement.

Union: $L_1 = L(G_1) \cup L_2 = L(G_2)$. Assume $V_1 \cap V_2 = \emptyset$, where V_i is set of variables in G_i . Take fresh $S \notin V_1 \cup V_2 \cup \Sigma$. Set up G with S_i on start nonterminal of G_i :

$$G = (V_1 \cup V_2 \cup \{S\}, \Sigma, R_1 \cup R_2 \cup \{S \rightarrow S_1\} \cup \{S \rightarrow S_2\}, S)$$

Not closed under **Intersection**:
$$L_1 = \{a^i b^i c^k : i = j\}$$

 $L_2 = \{a^i b^i c^k : j = k\}$ CFLs

 $L_1 \cap L_2 = \{a^n b^n c^n : n \ge 0\}$ not a CFL! $L: S \to AB, A \to aAb|\epsilon, B \to cB|\epsilon \text{ not a CFL}$

- 7. **Theorem**: \exists CFL whose complement is not a CFL. **Proof**: otherwise $(\overline{L_1} \cup \overline{L_2}) \to L_1 \cap L_2$ is regular.
- 8. **Theorem**: if $R \subseteq \Sigma^*$ os regular and $L \subseteq \Sigma^*$ is CFL, then $L \cap R$ is CFL.

Proof:

Let P be a PDA: L(P) = L.

Let D be a DFA: L(D) = R.

Construct product automaton A (also a PDA):

- state set $Q_P \times Q_D$
- initial state (i_P, i_D)
- final states $F_P \times F_D$
- stack alphabet Γ_P
- transitions:

 $(q', \gamma') \in \delta_P(q, a, \gamma)$ where $a \neq \epsilon$, and $\delta_D(r, a) = r'$.

Now have: $((q', r')\gamma') \in \delta_A((q, r), a, \gamma)$ for all states r of D Basically run PDA and DFA in tandem.

- 9. **Theorem**: Every unary CFL $L \subseteq \{a\}^*$ is regular.
- 10. Commutative image counts instances of all elements of alphabet in an input string.
- 11. **Theorem**: For every CFL $L \subseteq \Sigma^*$, there is a regular $R \subseteq \Sigma^*$ with commutative image $\Psi(L) = \Psi(R)$.
- 12. **Theorem**: If CFG G contains **no** strings of length longer than the pumping length p, then the language is finite.

If G contains even one string of length longer than p, then the language is infinite.

- 13. **Theorem**: If CFG G contains even one string of length longer than pumping length p, then it also contains a string of length at most 2p-1
- 14.

Intersection	Reg.	CFL	Decidable	r.e.
Reg.	Reg			
CFL	CFL	Dec		
Decidable	Dec	Dec	Dec	
r.e.	r.e.	r.e.	r.e.	r.e.

Turing Machines

- 1. Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ with:
 - 1. Q: finite set of states,
 - **2.** Σ : finite inp alphabet without blank \sqcup or start \vdash ,
 - **3.** Γ is tape alphabet, with $\sqcup, \vdash \in \Gamma$ and $\Sigma \subseteq \Gamma$,
 - **4.** $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: rewrite, move left/right,
 - **5.** $q_0 \in Q$ is the start state,
 - **6.** q_{accept} is the accept state,
 - 7. $q_{\text{reject}} \neq q_{\text{accept}}$ is the reject state;

Rewrite first, then move. Immediately halt upon entering q_{acc}, q_{rej} . Have start symbol $\vdash \in \Gamma, \vdash \notin \Sigma$.

- 2. Configuration is a snapshot of what the TM looks like at any point (state, tape contents, reading head position): $X = (u, q, v) \subseteq \Gamma^* \times Q \times \Gamma^*$: tape followed by states followed by tape again $(\vdash, 0, q, 11, \sqcup)$.
- 3. Start configuration: $(\vdash, q_0, w \in \Sigma^*)$. Accepting configuration : $(u, q_{\text{accept}}, v)$. Halting Rejecting configuration : (u, q_{reject}, v) .
- 4. Configuration (s_1, q_1, t_1) yields (s_1, q_2, t_2) if:
 - **1.** (s_1, q_1, t_1) is not halting, so can proceed,
 - **2.** if $t_1 \neq \epsilon$ and $t_1 \in a\Gamma^*$ where $a \in \Gamma$, either:
 - $\delta(q_1, a) = (q_2, b, R)$ and $s_2 = s_1 b$ and $t_1 = a t_2$; or
 - $\delta(q_1, a) = (q_2, b, L)$ and:
 - \gg assuming $s_1 \neq \epsilon$ have: $s_1 = s_2 c$ for some $c \in \Gamma$, and $t_2 = cbt'$ where $t_1 = at'$;
 - \gg assuming $s_1 = \epsilon$, have $s_2 = \epsilon$, $t_2 = bt'$, $t_1 = at'$ for some $t' \in \Gamma^*$
 - **3.** if $t_2 = \epsilon$, and either:
 - $\delta(q_1 \sqcup) = (q_2, b, L)$ and $s_1 = s_2 c$ for some $c \in \Gamma$, $t_2 = cb$
 - $\delta(q_1, \sqcup) = (q_2, b, R)$ and $s_2 = s_1, b$ and $t_2 = \epsilon$.

E.g. abq_icd yields $abc'q_jd$ if $\delta(q_i,c)=(q_j,c',R)$

- 5. A run of TM M on input $w \in \Sigma^*$ is a finite sequence of configurations $c_0, c_1, ... c_n$ s.t.
 - **1.** c_0 is the start config of M on w;
 - **2.** for each i = 1, ..n: c_{i-1} yields c_i .
- 6. Accepting/Rejecting run if it ends in acc/rej config.
- 7. TM M accepts/rejects input $w \in \Sigma^*$ if \exists acc/rej run of M on w. M halts on $w \in \Sigma^*$ if it accepts or rejects w.
- 8. Language **recognised** by TM M is $L(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$
- 9. TM M is a **decider** if it rejects all strings from $\Sigma^* \setminus L(M)$. **M** is said to **decide** the language L(M).

Variands of TMs, Decision Problems

- 1. **Stay Put** TM: $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ where S is "do nothing", or "stay put".
- 2. **Bi-infinite** TM: tape has infinite \sqcup to both sides of the input; but can split in half, creating two-row normal TM, each column sharing a reading head unless storing last position reference per reading head somewhere, so not more expressive power. $\delta: Q \times \Gamma^2 \to Q \times \Gamma^2 \times \{L, R\}^2$
- 3. **Multi-tape** TM has n tapes, each with a different reading head: $\delta: Q \times \Gamma^n \to Q \times \Gamma^n \times \{L, R\}^n$.
- 4. $L \subseteq \Sigma^*$ is Turing-recognisable or recursively enumerable (r.e.) if there is a TM M: L(M) = L.
- 5. $L \subseteq \Sigma^*$ is **Turing-decidable** or *recursive* if there is a decider D: L(D) = L (never halts).
- 6. For any object O (e.g. TM, PDA, NFA, DFA, etc): write $\langle O \rangle$ for the **encoding** of O as string over appropriate Σ . Also, $\langle O, w \rangle \in \Sigma_0^*$: single string encoding of O and $w \in \Sigma$ pair over alphabet Σ (basically a file).
- 7. Acceptance Decision Problem for PDA:
 - input: PDA \mathcal{A} , input string $w \in \Sigma^*$.
 - output: does \mathcal{A} accept w?

 $\mathcal{A}_{PDA} = \{ \langle \mathcal{A}, w \rangle : \mathcal{A} \text{ is a PDA}, \mathcal{A} \text{ accepts } w \}.$

 \mathcal{A}_{PDA} is decidable

8. Acceptance Decision Problem for TM:

 $\mathcal{A}_{TM} = \{ \langle M, w \rangle : M \text{ is a TM that accepts } w \}$

Theorem: A_{TM} is undecidable.

Proof by contradiction:

Assume FTSOC \mathcal{A} is a decider for \mathcal{A}_{TM} . Then on input $\langle M, w \rangle$:

- \mathcal{A} accepts if M accepts w, \mathcal{A} rejects if M doesn't accept w. Let D be a new TM, which on input $\langle M \rangle$ (where M is a TM), simulates \mathcal{A} on $\langle M, \langle M \rangle \rangle$ (i.e. $w = \langle M \rangle$),
 - if \mathcal{A} accepts $(M \text{ accepts } \langle M \rangle)$, D rejects,
 - but if A rejects (if M rejects $\langle M \rangle$), D accepts.

If D accepts $\langle D \rangle$, it rejects $\langle D \rangle$. If D rejects $\langle D \rangle$, it accepts $\langle D \rangle$

Decidability

- 1. **Theorem** A_{TM} is recursively enumerable & undecidable. **Proof**: take TM U (**interpreter**) which on input $\langle M, w \rangle$:
 - 1. Simulates execution of code M on input w step by step.
 - **2.** if M accepts/rejects so does U.
- 2. If \mathcal{A} is a decider for \mathcal{A}_{TM} then \mathcal{A} takes as input code M and input w and either returns accept or rejects. Use this as a black box to build decider \mathcal{D} , that accepts M then inside feeds machine M and description of machine $\langle M \rangle$.

3. **Theorem** Class of decidable languages is closed under union, intersection, complement and kleene star.

1)
$$w \to \boxed{M} \xrightarrow{\rightarrow} \operatorname{accept}$$
 2) $w \to \boxed{M} \xrightarrow{\rightarrow} \operatorname{reject} \xrightarrow{\rightarrow} \operatorname{rej}$

Proof: suppose L is decidable, let 1) TM M be a decider for L, L = L(M); and 2) TM M' be its complement.

- **Intersection** accept if both (1,2) accept.
- Union accept if any of the two (1 or 2) deciders accept.
- Kleene star: there is a decider for L^* where:
 - 1. Given input $w \in \Sigma^*$, consider all partitions of w into substrings. For each part, run M.
 - **2.** If for some partitioning M accepts every part, then accept, otherwise reject.
- 4. Suppose Σ , Δ are finite alphabets. Function $f: \Sigma^* \to \Delta^*$ is **Turing Computable** if \exists decider that $\forall w \in \Sigma^*$ halts leaving f(w) on the tape.
- 5. Church-Turing thesis: anything that can be described algorithmically has a TM.
- 6. **Theorem**: Let L be language over alphabet Σ^* . L is decidable iff both L and complement $\Sigma^* \setminus L$ are r.e.

Proof: (\Rightarrow): Suppose L = L(D), D is decider, since D is a TM, then L is r.e. To recognise $L = \Sigma^* \setminus L$ run D and flip the answer.

(\Leftarrow): let M_1, M_2 be TMs for L and \overline{L} respectively. Given input $w \in \Sigma^*$, run M_1 on w and, in parallel, run M_2 on w, then one of M_1, M_2 must halt since if $w \in L$ then M_1 eventually accepts so accept, if not - then M_2 does, so reject. Hence this is a decider for L.

Halting

- 1. L decidable $\equiv L, \overline{L}$ are turing-recognisable.
- 2. Corollary: $\overline{A_{TM}} = \{ \langle M, w \rangle : M \text{ is a TM, string } w \text{ and } M \text{ does not accept } w \} \text{ is not r.e. (infinite loops aren't turing recognisable).}$
- 3. Co-recursively enumerable (co-r.e.): languages whos complement is r.e.
- 4. **Intersection** of r.e. and co-r.e. is decidable.
- 5. There are countably many TMs, but uncountably many languages $L \subseteq \{a, b\}^*$, so not all languages are decidable.
- 6. Halting problem $HALT_{TM} = \{\langle M, w \rangle : M \text{ is a TM, } w \text{ is a string and } M \text{ halts on input } w\}.$

- 7. Suppose A, B are languages where $A \subseteq \Sigma^*, B \subseteq \Delta^*$. Then Δ is **reducible** to B if there is a computable function $f: \Sigma^* \to \Delta^*$ s.t. $\forall w \in \Sigma^* : w \in A$ iff $f(w) \in B$.
- 8. Write $A \ll_m B$, f is a many-one reduction (1 call).
- 9. **Lemma**: if $A \leq_m B$ and B decidable then A is decidable. **Proof**: Let f be a reduction from A to B, so B is the TM that on input $w \in \Sigma^*$ produces f(w).

Let M be a decider for B. Use R to decide if f(w) is in B, then accept if so, reject otherwise. \square

10. $A_{TM} \leq_m \text{HALT}_{TM} \leq_m A_{TM}$, and A_{TM} is undecidable implies that HALT_{TM} is undecidable.

Proof: for $A_{TM} \leq_m^f \text{HALT}_{TM} \leq_m^g A_{TM}$:

$$f)\ w \to \boxed{ \boxed{M} \ \ \begin{matrix} \operatorname{acc} \\ \operatorname{rej} \to \\ \operatorname{loop} \end{matrix} } \to \operatorname{LOOP} \qquad g)\ w \to \boxed{ \boxed{M} \ \ \begin{matrix} \operatorname{halt} \to \\ \operatorname{loop} \end{matrix} } \to \operatorname{ACCEPT}$$

- $(\Rightarrow) \text{ On input } \langle M, w \rangle, \ f \text{ produces } \langle M', w \rangle.$ Now, M': on input w run M on w, if it accepts then accept, if rejects then loop forever.
- (\Leftarrow) On input $\langle M, w \rangle$, g produces $\langle M', w \rangle$. Now, M': on input w, run M on w; if it accepts or rejects, then accept.
- 11. Given a TM M, all of 1, 2, 3 are undecidable for TM Does M halt on 1. ϵ ? 2. $L(M) \neq \emptyset$? 3. Is $L(M) = \Sigma^*$?

Proof for $L_{\epsilon} = \{\langle M \rangle : M \text{ is a TM and } T \text{ halts on } \epsilon\}$ by reduction $A_{TM} \leq_m \text{HALT}_{\epsilon}$

- To solve acceptance problem on input $\langle M, w \rangle$: run M on w: if M accepts, accept, if M rejects loop forever.
- Computable f (reduction $\mathcal{A}_{TM} \leq_m^f$) on input $\langle M, w \rangle$, where M is a TM and w is a string: Construct TM $N_{M,w}$, which given input string x ignores x and runs M on w -accepting if M accepts and loops forever if M rejects.
- The output of reduction $f(\langle M, w \rangle) = \langle N_{M,w} \rangle$.
- For all $s \in \Sigma^* : s \in A$ iff $f(s) \in B$.
- For all $\langle M, w \rangle$, M accepts w iff $N_{M,w}$ halts on ϵ .

If M accepts w, then $N_{M,w}$ halts on ϵ .

If M doesn't accept w, then $N_{M,w}$ doesn't halt on ϵ .

(2), (3) follow the same logic - if M doesn't accept anything then $L(M) = \emptyset$, if accepts everything - $L(M) = \Sigma^*$.

Basically take a machine that does something, give it your custom input, and see if it can arrive at some answer with it ignoring all other inputs other than yours - if it does, then you can accept.

- 12. Rice Theorem: all non-trivial (not \top/\bot) semantic properties of programs are undecidable.
- 13. **Theorem**: Recognisable (r.e.) languages are closed under: $\cap, \cup, *$ but not complement.

Proof: Problem P is decidable if both P and \overline{P} are r.e. We know that H_{TM} is undecidable and r.e., therefore $\overline{H_{TM}}$ is not r.e. So not closed under complement.

- 14. **Enumerator** is a variant of a multi-tape TM with:
 - work tape (read-write), output tape (read-only),
 - distinguishable "enum" state.

Initially, both tapes empty (always runs on empty input). When "enum" is reached, flush the output; continue.

Enumerates the strings it outputs, hence its language, or the set of strings it produces is **exactly r.e.**

- 15. If $A \leq_m B$ and B decidable, then A decidable.
- 16. If $A \leq_m B$ and A undecidable, then B undecidable.
- 17. Problem P is decidable if both P and \overline{P} are r.e.
- 18. If $A \leq_m B$ and B is r.e., then A is r.e.

_		Reg.	CFL	Decidable	r.e.
19.	Complement	Y	N	Y	N
	Union \cup	Y	Y	Y	Y
	Intersection \cap	Y	N	Y	Y
	Kleene $*$	Y	Y	Y	Y
	Concatenation	Y	Y	Y	Y

	Regular	\mathbf{CFL}	R.E languages	
20.	NFA/DFA/GNFA	PDA	TM	
	Regular	CFG	Type 0 grammars	
	Grammars			
	Pushdown,	CFL	Reductions	
	Myhil-Nerode	Pushdown		

22. State Diagram and State transition table.

STATE DIAGRAM

STATE TRANSITION TABLE