
Lecture Notes
CS259 - Formal Languages

Intro Sipser1, Hopcroft2 [1.5]

1. Alphabet Σ is finite non-empty set of symbols/letters,
so the empty string isn’t in it ϵ /∈ Σ.

2. String/word w is finite sequence of symbols chosen from
some alphabet. Empty string ϵ doesn’t contain symbols.

3. Define Σk to be set of strings of length k. E.g. Σ = {0, 1}:
Σ0 = {ϵ}, Σ1 = {0, 1}, Σ2 = {00, 01, 10, 11} etc.
Define Σ∗ = Σ0 ∪Σ1 ∪ ... to be a set of all strings over an
alphabet Σ. Set of all non-empty strings Σ+ = Σ∗ \ {ϵ}

4. Length of string w is denoted by |w|, importantly |ϵ| = 0.
Substring is a consecutive subsequence within a string.
Concatenation of strings x, y is denoted by xy.

5. Language is some L ⊆ Σ∗. Decision problem is a function
w ∈ Σ∗ → {Yes,No}. Not all languages have algorithms.

6. Finite Automata/Machine (FA) A = (Q,Σ, δ, q0, F )
is quintuple with finite set of states Q, alphabet Σ, state
transition function δ, initial state q0 and set of all accept-
ing states F ⊆ Q.

Deterministic Finite Automata DFA

1. Deterministic Finite Automata/Machine (DFA) is
FA with single-choice transition function δ : Q× Σ→ Q

2. Extended transition function δ̂ : Q× Σ∗ → Q says
what happens if you start in any state q and follow any se-
quence of inputs given transition function δ. Define by in-
duction on length of input str w=xa, |ϵ|=0, |xa| = |x|+|a|:
Base Case: δ̂(q, ϵ) = q. No inputs read, no state change.
I.S.: δ̂(q, w) = δ(δ̂(q, x), a) with w = xa, tail recursion.

3. Language L(A) = {w ∈ Σ∗ : δ̂(q0, w) ∈ F} of automaton
A is set of all strings w accepted by A, or qfinal ∈ F .
Regular language (RL) is one recognised by some FA.

4. Collection of objects in domain D is closed under an op-
eration □ if x1, x2 ∈ D ⇒ x1□x2 ∈ D.

5. Let A,B be languages. Class of RL is closed under follow-
ing for A = (QA,Σ, qA, FA, δA), B = (QB,Σ, qB, FB, δB):

• Intersection A ∩B = {x : x ∈ A ∧ x ∈ B}
M ′ = (QA ×QB ,Σ, (qA, qB), FA × FB , δ

′) where δ′ is:

∀a ∈ Σ, x ∈ QA, y ∈ QB : δ′((x, y), a) = (δA(x, a), δB(y, a))

•Union A ∪B = {x : x ∈ A ∨ x ∈ B}
M ′ = (QA ×QB ,Σ, (qA, qB), (FA ×QB) ∪ (QA × FB), δ

′)

∀a ∈ Σ, x ∈ QA, y ∈ QB : δ′((x, y), a) = (δA(x, a), δB(y, a))

•Complementation A = Σ∗ \A
M ′ = (QA,Σ, qA, QA \ FA, δA)

•Concatenation A ◦B = {xy : x ∈ A ∧ y ∈ B}
M ′ = (QA ∪QB ,Σ ∪ {ϵ}, qA, FB , δ

′) where δ′ is:

∀a ∈ Σ, x ∈ QA : δ′(x, a) = δA(x, a),

∀a ∈ Σ, y ∈ QB : δ′(y, a) = δB(y, a),

∀f ∈ FA : δ′(f, ϵ) = {qB}
• Set Difference A \B = A ∩ (Σ∗ \B)

M ′=(QA ×QB ,Σ, (qA, qB), FA × (QB \ FB), δ
′) where δ′ is:

∀a ∈ Σ, x ∈ QA, y ∈ QB : δ′((x, y), a) = (δA(x, a), δB(y, a))

•Kleene Star A∗ = {x1x2 · · ·xk : xi ∈ A, k ≥ 0}
M ′ = (QA ∪ {qs},Σ ∪ {ϵ}, qs, FA ∪ {qs}, δ′) where δ′ is:

∀a ∈ Σ, q ∈ QA : δ′(q, a) = δA(q, a),

δ′(qs, ϵ) = {qA},
∀f ∈ FA : δ′(f, ϵ) = {qA, qs}

Nondeterministic Finite Automata NFA

1. NFA’s are more succinct than and can always be convert-
ed/compiled into DFA’s - both accept same class of RL’s.

2. ∀w ∈ Σ a DFA has exactly 1 transition out of a state
whereas NFA can have 0, 1 or multiple, hence the transi-
tion function δ : Q× Σϵ → 2Q where Σϵ = (Σ ∪ {ϵ}).

3. Extended transition function δ̂ : Q× Σ∗ → 2Q also
defined by induction on length of input string w = xa:

Base Case: δ̂(q, ϵ) = q. No inputs read, no state change.
I.S.: δ̂(q, w) = ∪ki=1δ(pi, a), where δ̂(q, x) = {p1, ..pk}
Informally, find δ̂(q, w) by first computing left part δ(q, x),
and for each resulting state pi, finding δ̂(pi, a) where a is
last symbol of w.

1Introduction to the Theory of Computation, 3rd ed.
2Hopcroft Motwani Ullman 2014

1

https://rl.talis.com/3/warwick/lists/02B40E11-0AFD-5CF1-E88D-12F6A8053925.html?lang=en-GB&login=1
https://rl.talis.com/3/warwick/lists/02B40E11-0AFD-5CF1-E88D-12F6A8053925.html?lang=en-GB&login=1


4. Language of NFA L(A) = {w : δ̂(q0, w) ∩ F ̸= ∅}
NFA A=(Q,Σ, δ, q0, F ) accepts str w = w1w2 · · ·wm ∈ Σ
if it’s possible to make any sequence of choices of next
state q0, q1, ..qm ∈ Q while reading chars wi ∈ w, where
qi+1 ∈ δ(qi, wi+1) and go from start state q0 to any ac-
cepting state qm ∈ F . ∃ accepting run on word w.

5. Theorem: Every NFA has an equivalent DFA.
+: Language regular iff recognised by some NFA.
+: DFA D constructed from NFA N ⇒ L(D) = L(N )

NFA N = (Q,Σ, δ, q0, F )→ DFA D = (2Q,Σ, δ′, {q0}, F ′}
where δ′(R, a) = ∪r∈Rδ(r, a) for set R ⊆ Q of original
states, F ′ = {R ⊆ 2Q : R ∩ F ̸= ∅} contains accept state.

Epsilon-Closure (EClose/ϵ-Close)

1. Epsilon-transition δ(q, ϵ) denotes empty-string transi-
tion yielding unconditionally reachable states. Useful for
proving equivalence of RL classes.

2. ϵ-NFA A = (Q,Σ, δ, q0, F ) but with δ(q, wi ∈ Σ∪{ϵ})
which can accept any character including an empty string.

3. Epsilon-Closure EClose(q): Q → 2Q recursively defines
all states reachable from q with ϵ-transitions alone:

Base Case: state q ∈ EClose(q) (stays itself)
I.S.: if state p ∈ EClose(q) and ∃ transition δ(p, ϵ) = R
of all reachable states ri then ∀ri ∈ R : ri ∈ EClose(q).

4. ϵ-NFA extended transition func. δ̂(q, w) : Q×Σ∗→2Q

produces all states R ⊆ Q to which ∃ a run from state
q upon reading string w=xa with nonempty last char
a ∈ Σ ̸= ϵ.

Base Base: ∀q ∈ Q : δ̂(q, ϵ) = EClose(q) (by definition).
I.H.: let δ̂(q, x) = P of states reachable from q by follow-
ing sequence x and ∪ki=1δ̂(pi∈P, a)=R of states reachable
from previous step following final non-empty input a. Fi-
nally, define δ̂(q, w) = ∪mj=1EClose(rj∈R).

5. Theorem: Every ϵ-NFA has an equivalent DFA. Q′ ⊆ Q
ϵ-NFA E = (Q,Σ, δ, q0, F )→ DFA D = (Q′,Σ, δ q0, F

′).

6. Theorem: For every ϵ-free NFA N = (Q, σ, q0, F, δ): ∃
DFA D = (2Q,Σ,EClose(q0), FD, δD) s.t. L(N) = L(D).
Proof : Given SD : 2Q×Σ→ 2Q take a ∈ Σ, S ∈ 2Q (S ⊆
Q), suppose S = {s1, .., sm} ,then δD(S, a) = ∪mi=1δ(si, a).
Now, FD = {A ⊆ Q : A ∩ F ̸= ∅}.

Regular Expressions (RegEx)

1. Regular expression R ∈ {a ∈ Σ, ϵ,∅, R1+R2, R1◦R2, R
∗
1}.

Order of operations: 1. Kleene ∗ 2. Concat ◦ 3. Union +.
E.g. ”all languages with second to last character being 1”
is (0 + 1)∗ ◦ 1 ◦ (0 + 1).

2. Remember: ϵ represents a language containing only the
empty string, ∅ represents the language that doesn’t con-
tain any strings. Empty word ϵ is something, empty state
∅ is nothing, hence L(R ◦ ϵ) = L(R), but L(R ◦∅) = ∅.

3. Remember: Languages L contain strings, alphabets Σ
contain symbols, so L1 ̸= Σ1 but (L1)∗ and (Σ1)∗ denote
the same language. Remember: L(∅∗) = {ϵ}

4. Kleene star/plus ()∗/+ creates any number k of concate-
nated ordered values A∗={x1, x2, ..xk : k ≥ 0/1, ∀x1 ∈ A}
or infinite union A∗ = A0 ∪A1.. ∪Ak. But finite ∅∗={ϵ}.

5. Token is elemental object of programming language (key-
words: if, else ..; vars; integers etc.) E.g. Integers :
(” + ” + ”− ” + ϵ) ◦ (1 + 2 + ..+ 9) ◦ (0 + 1 + ..+ 9)∗.

6. Theorem: Language is regular iff some regular expression
describes (generates) it. NFA ≡ DFA ≡ RegEx.

7. Regex → NFA: node ◦, accepting •
•L(R) = {a} if R = a ∈ Σ → ◦ a→ •
•L(R) = {ϵ} if R = ϵ → •
•L(R) = ∅ if R = ∅ → ◦
•L(R) = L(R1) ∪ L(R2) if R = R1 +R2 → ◦ ϵ→ N1, N2

•L(R) = L(R1) ◦ L(R2) if R = R1 ◦R2 N1
ϵ→ N2

•L(R) = (L(R1))
∗ if R∗

1 • ϵ→ N1
ϵ← •1, •2..

8. Convert NFA/DFA → RegEx: (see GNFA)
1. add qstart, qfinal without changing automaton
2. eliminate non-final and non-start states
3. eliminate qfinal

Generalised NFA (GNFA)

1. GNFA (Q,Σ, δ, qstart, qfinal) is an NFA where each transi-
tion may have any RegEx ri ∈ R as label instead of just
Σϵ members. Transition δ : (Q\{qfinal})×(Q\{qstart})→ R
where R is set of all RegEx over the alphabet.

2. GNFA has unique qfinal state (sink): ∄ transitions to any
other state, qstart state (source): no transitions to start
state. Otherwise ∃ pairwise transition between all states.

3. Convert DFA → GNFA: q′start →ϵ qstart → . . .
1. add new q′start with ϵ-transition to qstart.
2. add new q′final with ϵ-transition reachable from qfinal.
3. replace pairwise multi-transitions with single transition
4. Add ∅ transit. between pairs requiring but missing one

4. Convert GNFA → RegEx: Assume GNFA has k ≥
states since have unique qstart, qfinal. Determine regex and
replace with current transition:
If k > 2: construct equivalent GNFA with k − 1 states
removing a non-edge state, repeat until k = 2 resulting in
RegEx R equivalent to original DFA.

2



5. To remove non-edge state, remove path p1 → q → p2 s.t.
∀(qα, qβ) ∈ (Q\{qfinal, q1})×(Q\{qstart, q1}), and have new:
δ′(qα, qβ) = δ(qα, qβ) + δ(qα, q1) · δ(q1, q1)∗ · δ(q1, qβ)

6. GNFA accepts string w ∈ Σ∗ if w = w1 · w2 · · ·wk where
∀wi ∈ Σ∗ and a sequence of states q0, ..qk exists s.t.
q0 = qstart, qk = qfinal and for each i : wi ∈ L(Ri) where
Ri = δ(qi−1, qi).

7. Claim: For any GNFA G the RegEx produced by above
method is equivalent to G.
Proof : by induction on k states in G. Base case: k = 2,
I.H.: assume true for k − 1 that G on k states accepts w,
then ∃ sequence qstart, q1, ..qfinal that w uses. If removed
state q is not part of it then new k− 1 automaton accepts
the same word. If q appears as p1qq..p2 then removing qs
and considering new k−1 automaton doesn’t change word
being accepted since p1 → p2 now encapsulates q.

Non-Regularity & Myhil-Nerode

1. Strings x, y ∈ Σ∗ are distinguishable by language L ∈ Σ∗

if ∃w ∈ Σ∗ s.t. there’s only one of xw or yw in L.

2. Lemma: Indistinguishability ≡L is an equivalence re-
lation on Σ∗. Strings x, y indistinguishable by L if x ≡L y.

3. Index of ≡L is the number of its equivalence classes.

4. Myhil–Nerode Theorem: Let L ⊆ Σ∗, k ∈ Z+, then
≡L has at most k equivalence classes iff L = L(A) for
some DFA A with at most k states.

Corollary: L ⊆ Σ∗ is regular iff ≡L has finite index,
otherwise L is a non-regular language.

5. All strings an, n ∈ Z are distinguishable because aibi ∈ L
but ajbi ∈ L iff i = j, so it doesn’t always hold.

Proof : given L, DFA A = (Q,Σ, q0, F, δ), Q = {q1, ..qn}.
For x, y ∈ Σ∗ : x ∼ y if δ̂(q0, x) = δ̂(q0, y) (arrive at the
same state from both). So, ∼A is equiv relation on Σ∗,
hence x ∼A y ⇒ x ≡L y.

6. To prove that language L is non-regular need to
(1) provide infinite set of strings and
(2) prove that they are pairwise distinguishable by L.
This will show that they must all lie in distinct equiv
classes of≡L, so≡L must have an infinite number of equiv-
alence classes, so it’s non-regular.

7. To prove that language L is regular, it suffices to
(1) describe the equivalence relation ≡L on Σ∗, and
(2) show that there are finitely many equivalence classes.
Then, by the Myhill-Nerode theorem, L is regular.
Or just construct DFA/NFA/Regex accepting L.

Non-Regularity & Pumping Lemma

1. Pigeonhole principle: if n pigeons are placed into
m ≤ n holes, then some hole has to have more than 1
pigeon in it.

2. For DFA A : ∃ a cycle reachable from the start state qstart
that can reach the accept state qfinal iff L(A) is infinite.
Equivalently, there must exist a string w ∈ L(A) of length
|w| > |Q| (# states in A) to create that loop.

3. Pumping Lemma: Let L be a regular language. Then ∃
pumping length p ∈ Z+ s.t. to account for the loop, any
string w ∈ L with |w| ≥ p can be pumped (rewritten) as
w = xyz, where

1. ∀i ≥ 0 : xyiz ∈ L(A): middle part y can be repeated
any number of times i and remain in the language of A.
2. |y| > 0, y ̸= ϵ: middle part cannot be empty, however
either x or z may be empty (ϵ).
3. |xy| ≤ p.

4. FAs have finite memory, so non-regular languages use
infinite memory and often involve counting.

5. Pumping Lemma proof that L is non-regular:
1. Suppose L is regular and let p be L’s pumping length.
2. Choose a string w ∈ L s.t. |w| ≥ p.
3. Let w = xyz be an arbitrary decomposition of w s.t.
|xy| ≤ p and |y| > 0.

4. Find such decomposition, e.g. x = 0α, y = 0β, z = 0γ1p

where α+ β + γ = p, β > 0 and α+ β ≤ p
5. Pick integer i and argue that xyiz /∈ L.

6. Myhill-Nerode proof that L is non-regular:
1. Suppose, for contradiction, that L is regular.
2. Consider distinguishing set S = {sn : n ∈ N} over Σ∗.

I.e. words to be told apart. E.g. S = {an|n ≥ 1}.
3. For any two distinct sm, sn ∈ S with m ̸= n,

find a distinguishing string z such that exactly one of
smz or snz is in L. E.g. z = {bn} s.t.
anbn ∈ L but ambn /∈ L.

4. Conclude that S is an infinite set of pairwise distin-
guishable strings, so there are infinitely many equivalence
classes of ≡L.
5. By the Myhill-Nerode theorem, L cannot be regular.

7. Language L satisfying the Pumping Lemma is not neces-
sarily regular!

3



Decision Problems

1. Emptiness: In: DFA A. Out : whether L(A) = ∅.
How: Perform BFS from the start state q0 to see if
any accepting state is reachable.

2. Inclusion: In: DFA A1, A2. Out : if L(A1) ⊆ L(A2).
How: Check if L(A1) ∩ L(A2) = ∅.

3. Membership: In: DFA A, alphabet Σ, word w ∈ Σ∗.
Out : whether (w ∈ Σ∗) ∈ L(A).

How: Simulate A on w (complexity O(|E| · |w|), where
|E| is the number of states/transitions).

Context-free languages (CFL)

1. Production or Rule α → β is a pair (α, β) ∈ R, or
line in the grammar that defines transformations for vari-
ables. Both α ̸=ϵ, β∈(V ∪Σ)∗ therefore set of productions
R ⊆ (V ∪Σ)+×(V ∪Σ)∗ must be finite, (+) because α ̸= ϵ

2. GrammarG = (V,Σ, R, S) with finite mutually-exclusive
sets V of variables (nonterminal symbols) and Σ of termi-
nal symbols. R is the finite set of production rules, S ∈ V
is the START variable (”axiom”).

3. Context-Free Grammar (CFG): for every production
the start point is within original V , or ∀(α, β) ∈ R : α ∈ V

4. For x, y ∈ Σ∗, write ”x yields y”: α ⇒ β if α can be
rewritten as β by applying a production rule (α, β) ∈ R.
e.g. G = ({S}, {0, 1}, R, S) rules R : S → 0S1; and S → ϵ,
giving S ⇒ 0S1⇒ 00S11⇒ 0011

5. ”x derives y”: x
∗⇒ y iff ∃ finite sequence x0, x1, ..xk, k ≥

0 s.t. x0 = x, xk = y and ∀i = 0, 1, .., k− 1 : xi ⇒ xi+1, or
if y is derivable from x by some sequence of productions.
∗⇒ is also a reflexive and transitive closure of ⇒.

6. Language of a grammar L(G) = {w ∈ Σ∗ : S
∗⇒ w} is

the set of all strings in Σ∗ which can be derived from S
using finitely many applications of production rules in G.

7. Parse Tree is like DFS tree of possible grammars’ values

Left-most derivation: yields the ”left-most” non-
terminating variable at each step. E.g. 1A10B would have
to expand (yield) non-terminal A first.

8. Ambiguous grammar G iff there are ≥ 2 parse trees for
some w ∈ L(G) ⇔ there are ≥ 2 leftmost derivations for
some w ∈ L(G). I.e. can generate the same string with
multiple parse trees. Inherently ambiguous G if every
possible CFG that generates this language is ambiguous.
I.e. can’t rewrite as an equivalent unambiguous grammar.

9. Chomsky Hierarchy of Grammars:
Type 3: Regular Right linear A→ xB and Left linear

A→ Bx, and possibly terminal A→ x.
Type 2: Context-free Q→ w
Type 1: Context-sensitive αAγ → αβγ
Type 0: Recursively-enumerable a→ β if α non-empty.
For variables A,B ∈ V , combinations of V -variables and
Σ-characters α, β, γ, w ∈ (V ∪Σ)∗; terminal string x ∈ Σ∗.

10. Strictly Right/Left-linear grammar has y ∈ Σ ∪ {ϵ},
NOT Σ∗. Have T → yB/By/y.

11.DFA → CFG: convert DFA A into equivalent CFG:
1. Make variable Ri for each state qi ∈ A with start vari-
able R0 of the grammar representing q0 start state of A.
2. Add rule Ri → aRj to the CFG if δ(qi, a) = qj is a
transition in A (express transition rules as productions).
3. Add rule Ri → ϵ if qi is an accept state of the DFA A.
DFA → strictly right-linear grammar: for each state q:
all strings that will take me from q to a final state

DFA → strictly left-linear grammar: for each state q:
all strings that will take me to q from start state

Push-Down Automata (PDA)

1. Push-Down Automaton (PDA) P = (Q,Σ,Γ, q0, F, δ)
has a stack Γ that is like a ”to-do list” of the automaton.
Importantly, it is nondeterministic (NFA with a stack).

2. Configuration of a PDA A = (Q,Σ,Γ, q0, F, δ) is a pair
(q, s) ∈ Q×Γ∗, where q is the current state and s is current
stack content (with the top of the stack at the left).

3. Transition function δ : Q × Σϵ × Γϵ → P(Q × Γ∗). The
pair (q′, γ′) ∈ δ(q, a, γ) means a a, γ → γ′ transition of:
1. start in state q ∈ Q.
2. consume next input symbol (condition) a ∈ Σϵ

3. pop γ ∈ Γϵ from the top of the stack
4. push a string γ′ ∈ Γ∗ on top of the stack
5. end up in state q′ ∈ Q.

4. A run of PDA A = (Q,Σ,Γ, q0, F, δ) on w ∈ Σ∗ is a se-
quence of configurations (q0, s0), ..(qm, sm) where (qi, si) ∈
Q×Γ∗ for which there exist w1, ..wm ∈ Σϵ s.t.t w1, ..wm =
w and moreover s0 = ϵ; and for i = 1, ..m, it holds that
si−1 = γs′, siγ

′s′ for s′ ∈ Γ∗.

4



5. Read ϵ: move without reading next symbol in input.
Push ϵ: don’t push anything on the stack.
Pop ϵ: don’t pop anything from the stack.

6. Theorem (CFG→ PDA): CFG G=(V,Σ, R, S) & PDA
P=(Q,Σ,Γ, q0, F, δ) recognise same lang : L(P )=L(G).
Stack Γ = V ∪ Σ ∪ {⊥}, where ⊥ /∈ V ∪ Σ.

Push(⊥), Push(S) then for each rule A→ α in R: pop(A),
push (αk). . . push(α1), upside-down to keep the stack or-
der. Finally, to accept, Pop(⊥).

7. Normalised PDA P :
1. P has a unique accepting state qfinal
2. P empties its stack before accepting (⊥).
3. Whenever (q′, γ′) ∈ δ(q, a, γ), either γ = ϵ ∨ γ′ = ϵ:
either push or pop, but not both.

8. Theorem (PDA → CFG): For every normalised PDA
P , there ∃ CFG G s.t. L(P ) = L(G). Construction proof:
• Vocabulary V = {Apq : p, q ∈ Q}
• Start variable s = Aif with initial i and final f rules.
• Rules R, ∀r, p, q ∈ Q : Apq → AprArq in Q2.

1. Apq → AprArq ◦p ⇝ ◦q ≡ ◦p ⇝ ◦r ⇝ ◦q
2. Apq → aAp′q′b ◦p ⇝ ◦q ≡ ◦p ⇝+γ⇝ ◦p′ ⇝ ◦q′ ⇝−γ ◦q
3. Apq → a ◦p ⇝a ◦q ≡ a: reach q from p with a
4. App → ϵ ◦p ⇝ϵ ◦p ≡ ϵ: reach p from p with ϵ

context free

1. Theorem: for every CFG G there is a CFG G′ in CNF
s.t. L(G)=L(G′).
Proof (Algorithm): u, v, w ∈ V ∪ Σ var ∧/∨ terminal
1. Add new start variable S0 and rule S0 → S s.t. S0

doesn’t appear on the RHS.
2. Remove each ϵ-rule of form A→ ϵ where A ̸= S0. Now
add all possible substitutions of A = ϵ to R, e.g.

if R→ uAvAw, then add 3 rules: uAvw, uvAw, uvw
Remember about transitivity: unless removed before,

whenever A→ B → ϵ appears, add A→ ϵ
3. Remove all unit rules A→ B, then

whenever B → u appears, add A→ u
4. Finally, replace all rules A→ u1, u2...uk : k ≥ 3, where
each ui is var/terminal, with rules

A→ u1A1, A1 → u2A2 ... Ak−2 → uk−1uk
5. Replace any terminal ui in preceding rules with new
variable Ui and add rule Ui → ui.

e.g. R→ aB ⇒ R→ U1B, U1 → a

2. Grammar G is in Chomsky Normal Form (CNF) if
all rules/productions have the form:
1. A→ BC A,B,C ∈ V
2. A→ a a ∈ Σ
Where B,C ̸= S (start var); also S → ϵ is permitted.

3. Theorem: there is an algorithm which given a CFG G in
CNF and string w ∈ Σ∗ determines whether w ∈ L(G) in
time O(|G| × |w|3).

4. Cocke-Younger-Kasami (CYK) bottom up parsing al-
gorithm for CFG G = (V,Σ, R, S) in CNF:

CYK algorithm O(|w|3 × |G|)
LHS(P × Q)={J ∈ V |

G has a rule J → XY where X ∈ P and Y ∈ Q}

for i=2,..,l-1: # l is length of w

for j=1,..l-(i-1):

for p=1,..i-1:

M[i,j] = M[i,j] ∪ LHS(M[p,j] × M[i-p,j+p])

w can be derived from G iff M[l,1] contains S

5. CFL Pumping Lemma: Let L be a CFL. Then ∃
pumping length p ∈ Z+ s.t. ∀w ∈ L with |w| ≥ p
can be decomposed as w = uvxyz ∈ Σ∗, where
1. uvixyiz ∈ L for all i ≥ 0
2. |vy| ≥ 1
3. |vxy| ≤ p

Proof :
• Given the smallest parse tree of w ∈ L(G), no path from
root to a leaf may repeat a non-terminal, and such a
path has ≤ |V | edges.
• If all rules have ≤ b symbols on the right, then such tree
yields |w| ≤ b|V |.

Don’t forget about cases!
e.g. L = {anbncn : n ≥ 0}: consider cases: 1.vwx ⊆ ap,
2.vwx ⊆ bp, 3. vwx ⊆ cp, 4. vwx ⊆ apbp, 5. vwx ⊆ bpcp

5



6. Family of CFL is closed under Union ∪, Kleene ∗, and
concatenation, but NOT intersection ∩ or complement.

Union: L1 = L(G1) ∪ L2 = L(G2). Assume V1 ∩ V2 = ∅,
where Vi is set of variables inGi. Take fresh S /∈ V1∪V2∪Σ.
Set up G with Si on start nonterminal of Gi:
G = (V1∪V2∪{S},Σ, R1∪R2∪{S → S1}∪{S → S2}, S)

Not closed under Intersection:
L1 = {aibick : i = j}
L2 = {aibick : j = k}

}
CFLs

L1 ∩ L2 = {anbncn : n ≥ 0} not a CFL!
L : S → AB,A→ aAb|ϵ, B → cB|ϵ not a CFL

7. Theorem: ∃ CFL whose complement is not a CFL.

Proof : otherwise (L1 ∪ L2)→ L1 ∩ L2 is regular.

8. Theorem: if R ⊆ Σ∗ os regular and L ⊆ Σ∗ is CFL, then
L ∩R is CFL.
Proof :
Let P be a PDA: L(P ) = L.
Let D be a DFA: L(D) = R.
Construct product automaton A (also a PDA):
- state set QP ×QD

- initial state (iP , iD)
- final states FP × FD

- stack alphabet ΓP

- transitions:
(q′, γ′) ∈ δP (q, a, γ) where a ̸= ϵ, and δD(r, a) = r′.
Now have: ((q′, r′)γ′) ∈ δA((q, r), a, γ) for all states r of D
Basically run PDA and DFA in tandem.

9. Theorem: Every unary CFL L ⊆ {a}∗ is regular.

10.Commutative image counts instances of all elements
of alphabet in an input string.

11.Theorem: For every CFL L ⊆ Σ∗, there is a regular
R ⊆ Σ∗ with commutative image Ψ(L) = Ψ(R).

12.Theorem: If CFG G contains no strings of length longer
than the pumping length p, then the language is finite.

If G contains even one string of length longer than p,
then the language is infinite.

13.Theorem: If CFG G contains even one string of length
longer than pumping length p, then it also contains a
string of length at most 2p− 1

14.
Intersection Reg. CFL Decidable r.e.

Reg. Reg

CFL CFL Dec

Decidable Dec Dec Dec

r.e. r.e. r.e. r.e. r.e.

Turing Machines

1. Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject) with:
1. Q: finite set of states,
2. Σ: finite inp alphabet without blank ⊔ or start ⊢,
3. Γ is tape alphabet, with ⊔,⊢∈ Γ and Σ ⊆ Γ,
4. δ : Q× Γ→ Q× Γ× {L,R}: rewrite, move left/right,
5. q0 ∈ Q is the start state,
6. qaccept is the accept state,
7. qreject ̸= qaccept is the reject state;
Rewrite first, then move. Immediately halt upon entering
qacc, qrej . Have start symbol ⊢∈ Γ,⊢/∈ Σ.

2. Configuration is a snapshot of what the TM looks like
at any point (state, tape contents, reading head position):
X = (u, q, v) ⊆ Γ∗ × Q × Γ∗: tape followed by states
followed by tape again (⊢, 0, q, 11,⊔).

3. Start configuration: (⊢, q0, w ∈ Σ∗).
Accepting configuration : (u, qaccept, v).
Rejecting configuration : (u, qreject, v).

}
Halting

4. Configuration (s1, q1, t1) yields (s1, q2, t2) if:
1. (s1, q1, t1) is not halting, so can proceed,
2. if t1 ̸= ϵ and t1 ∈ aΓ∗ where a ∈ Γ, either:
• δ(q1, a) = (q2, b, R) and s2 = s1b and t1 = at2; or
• δ(q1, a) = (q2, b, L) and:
≫ assuming s1 ̸= ϵ have: s1 = s2c for some c ∈ Γ, and

t2 = cbt′ where t1 = at′;
≫ assuming s1 = ϵ, have s2 = ϵ, t2 = bt′, t1 = at′ for

some t′ ∈ Γ∗

3. if t2 = ϵ, and either:
• δ(q1⊔) = (q2, b, L) and s1 = s2c for some c ∈ Γ, t2 = cb
• δ(q1,⊔) = (q2, b, R) and s2 = s1, b and t2 = ϵ.
E.g. abqicd yields abc′qjd if δ(qi, c) = (qj , c

′, R)

5. A run of TM M on input w ∈ Σ∗ is a finite sequence of
configurations c0, c1, ..cn s.t.
1. c0 is the start config of M on w;
2. for each i = 1, ..n: ci−1 yields ci.

6. Accepting/Rejecting run if it ends in acc/rej config.

7. TM M accepts/rejects input w ∈ Σ∗ if ∃ acc/rej run of
M on w. M halts on w ∈ Σ∗ if it accepts or rejects w.

8. Language recognised by TM M is
L(M) = {w ∈ Σ∗ |M accepts w}

9. TM M is a decider if it rejects all strings from Σ∗\L(M).
M is said to decide the language L(M).

r.e. | co-r.e.

Context Sensitive Languages

Context Free Languages

Regular Languages

everything else

6



Variands of TMs, Decision Problems

1. Stay Put TM: δ : Q× Γ→ Q× Γ× {L,R, S} where S is
”do nothing”, or ”stay put”.

2. Bi-infinite TM: tape has infinite ⊔ to both sides of the
input; but can split in half, creating two-row normal TM,
each column sharing a reading head unless storing last po-
sition reference per reading head somewhere, so not more
expressive power. δ : Q× Γ2 → Q× Γ2 × {L,R}2

3. Multi-tape TM has n tapes, each with a different reading
head: δ : Q× Γn → Q× Γn × {L,R}n.

4. L ⊆ Σ∗ is Turing-recognisable or recursively enu-
merable (r.e.) if there is a TM M : L(M) = L.

5. L ⊆ Σ∗ is Turing-decidable or recursive if there is a
decider D : L(D) = L (never halts).

6. For any object O (e.g. TM, PDA, NFA, DFA, etc): write
⟨O⟩ for the encoding of O as string over appropriate Σ.
Also, ⟨O,w⟩ ∈ Σ∗

0: single string encoding of O and w ∈ Σ
pair over alphabet Σ (basically a file).

7. Acceptance Decision Problem for PDA:
- input: PDA A, input string w ∈ Σ∗.
- output: does A accept w?
APDA = {⟨A, w⟩ : A is a PDA,A accepts w}.
APDA is decidable

8. Acceptance Decision Problem for TM:
ATM = {⟨M,w⟩ : M is a TM that accepts w}
Theorem: ATM is undecidable.
Proof by contradiction:

Assume FTSOC A is a decider for ATM . Then on input ⟨M,w⟩:
• A accepts if M accepts w, A rejects if M doesn’t accept w.

Let D be a new TM, which on input ⟨M⟩ (where M is a TM),

simulates A on ⟨M, ⟨M⟩⟩ (i.e. w = ⟨M⟩),
• if A accepts (M accepts ⟨M⟩), D rejects,

• but if A rejects (if M rejects ⟨M⟩), D accepts.

If D accepts ⟨D⟩, it rejects ⟨D⟩. If D rejects ⟨D⟩, it accepts ⟨D⟩

Decidability

1. Theorem ATM is recursively enumerable & undecidable.
Proof : take TM U (interpreter) which on input ⟨M,w⟩:
1. Simulates execution of code M on input w step by step.
2. if M accepts/rejects so does U .

2. If A is a decider for ATM then A takes as input code M
and input w and either returns accept or rejects. Use this
as a black box to build decider D, that accepts M then
inside feeds machine M and description of machine ⟨M⟩.

3. Theorem Class of decidable languages is closed under
union, intersection, complement and kleene star.

1) w → M
→ accept
→ reject

2) w → M
→ accept
→ reject

→ rej
→ acc

Proof : suppose L is decidable, let 1) TM M be a decider
for L, L = L(M); and 2) TM M ′ be its complement.
• Intersection - accept if both (1,2) accept.
•Union - accept if any of the two (1 or 2) deciders accept.
• Kleene star: there is a decider for L∗ where:
1. Given input w ∈ Σ∗, consider all partitions of w into

substrings. For each part, run M .
2. If for some partitioning M accepts every part, then

accept, otherwise reject.

4. Suppose Σ,∆ are finite alphabets. Function f : Σ∗ → ∆∗

is Turing Computable if ∃ decider that ∀w ∈ Σ∗ halts
leaving f(w) on the tape.

5. Church-Turing thesis: anything that can be described
algorithmically has a TM.

6. Theorem: Let L be language over alphabet Σ∗. L is de-
cidable iff both L and complement Σ∗ \ L are r.e.
Proof : (⇒): Suppose L = L(D), D is decider, since D is
a TM, then L is r.e. To recognise L = Σ∗ \ L run D and
flip the answer.
(⇐): let M1,M2 be TMs for L and L respectively. Given
input w ∈ Σ∗, run M1 on w and, in parallel, run M2 on
w, then one of M1,M2 must halt since if w ∈ L then M1

eventually accepts so accept, if not - then M2 does, so
reject. Hence this is a decider for L.

Halting

1. L decidable ≡ L,L are turing-recognisable.

2. Corollary: ATM = {⟨M,w⟩: M is a TM, string w and M
does not accept w} is not r.e. (infinite loops aren’t turing
recognisable).

3. Co-recursively enumerable (co-r.e.): languages whos
complement is r.e.

4. Intersection of r.e. and co-r.e. is decidable.

5. There are countably many TMs, but uncountably many
languages L ⊆ {a, b}∗, so not all languages are decidable.

6. Halting problem HALTTM = {⟨M,w⟩ : M is a TM, w
is a string and M halts on input w}.

7



7. Suppose A,B are languages where A ⊆ Σ∗, B ⊆ ∆∗. Then
∆ is reducible to B if there is a computable function
f : Σ∗ → ∆∗ s.t. ∀w ∈ Σ∗ : w ∈ A iff f(w) ∈ B.

8. Write A≪m B, f is a many-one reduction (1 call).

9. Lemma: if A ≤m B and B decidable then A is decidable.
Proof : Let f be a reduction from A to B, so R is the TM
that on input w ∈ Σ∗ produces f(w).
Let M be a decider for B. Use R to decide if f(w) is in
B, then accept if so, reject otherwise.

10.ATM ≤m HALTTM ≤m ATM , and ATM is undecidable
implies that HALTTM is undecidable.

Proof : for ATM ≤f
m HALTTM ≤g

m ATM :

f) w → M
acc
rej →
loop

→ LOOP g) w → M
halt →
loop

→ ACCEPT

(⇒) On input ⟨M,w⟩, f produces ⟨M ′, w⟩.
Now, M ′ : on input w run M on w, if it accepts then
accept, if rejects then loop forever.

(⇐) On input ⟨M,w⟩, g produces ⟨M ′, w⟩.
Now, M ′: on input w, run M on w; if it accepts or
rejects, then accept.

11. Given a TM M , all of 1, 2, 3 are undecidable for TM
Does M halt on 1. ϵ? 2. L(M) ̸= ∅? 3. Is L(M) = Σ∗?

Proof for Lϵ = {⟨M⟩ : M is a TM and T halts on ϵ} by
reduction ATM ≤m HALTϵ

• To solve acceptance problem on input ⟨M,w⟩: run M
on w: if M accepts, accept, if M rejects - loop forever.
• Computable f (reduction ATM ≤f

m) on input ⟨M,w⟩,
where M is a TM and w is a string: Construct TM NM,w,
which given input string x ignores x and runs M on w -
accepting if M accepts and loops forever if M rejects.

• The output of reduction f(⟨M,w⟩) = ⟨NM,w⟩.
• For all s ∈ Σ∗ : s ∈ A iff f(s) ∈ B.
• For all ⟨M,w⟩, M accepts w iff NM,w halts on ϵ.

If M accepts w, then NM,w halts on ϵ.
If M doesn’t accept w, then NM,w doesn’t halt on ϵ.

(2), (3) follow the same logic - if M doesn’t accept any-
thing then L(M) = ∅, if accepts everything - L(M) = Σ∗.

Basically take a machine that does something, give it your
custom input, and see if it can arrive at some answer with
it ignoring all other inputs other than yours - if it does,
then you can accept.

12.Rice Theorem: all non-trivial (not ⊤/⊥) semantic
properties of programs are undecidable.

13.Theorem: Recognisable (r.e.) languages are closed un-
der: ∩,∪, ∗ but not complement.

Proof : Problem P is decidable if both P and P are r.e.
We know that HTM is undecidable and r.e., thereforeHTM

is not r.e. So not closed under complement.

14.Enumerator is a variant of a multi-tape TM with:
- work tape (read-write), output tape (read-only),
- distinguishable ”enum” state.

Initially, both tapes empty (always runs on empty input).
When ”enum” is reached, flush the output; continue.

Enumerates the strings it outputs, hence its language, or
the set of strings it produces is exactly r.e.

15. If A ≤m B and B decidable, then A decidable.

16. If A ≤m B and A undecidable, then B undecidable.

17. Problem P is decidable if both P and P are r.e.

18. If A ≤m B and B is r.e., then A is r.e.

19.

Reg. CFL Decidable r.e.

Complement Y N Y N
Union ∪ Y Y Y Y
Intersection ∩ Y N Y Y
Kleene ∗ Y Y Y Y
Concatenation Y Y Y Y

20.

Regular CFL R.E languages

NFA/DFA/GNFA PDA TM

Regular
Grammars

CFG Type 0 grammars

Pushdown,
Myhil-Nerode

CFL
Pushdown

Reductions

21.

22. State Diagram and State transition table.

8


