
Lecture Notes
CS258 - Database Systems

Introduction

1. Database System (DBS) is used to model, access
(query+update), analyse, store, secure, ensure/maintain
consistency of (in face of failure/recovery or concurrent
transactions) and optimise access to (indexing, best order
of query operations) data.

2. DB manages structured data (e.g. tables). Recently,
NoSQL/graph DBs manage unstructured (e.g. images)
data, relying on Information Retrieval (IR). Data
modelling: identify data items, the relationships between
them and their attributes (characteristics).

3. Relation can be represented as a table comprising
columns of entity attributes, and a set of rows that
store entity or relationship values, formally, unordered set
tuples ⟨A1, ...An⟩ with column-attribute values Ai. At-
tributes have domains (e.g. age ∈ Z+). Order of tuples
and attributes doesn’t matter.

4. Rows must be uniquely identifiable with a key - singular
or composite. Can use row-ids/sequential numbers as ar-
tificial/surrogate keys, but they lack semantic meaning.

5. Query needs to specify table name and attribute names
of interest. Combined with constraints, eligible rows (data
items) are returned.

6. Relation Schema (intension) is the description of a
relation, denoted R(A1, ..., An) for relation name R and
attributes Ai STUDENT(id, name) all having domains.
Tuples (extension) are unordered sets of values derived
from appropriate domain, comprising a relation. Schema
is formal description of structure of stored data, whereas
data is the actual values stored under that schema.

7. State (instance) r(R)={t1, ...tm}⊂dom(Ai)×...×dom(An)
of a relation is the set of n-tuples ti =<v1, ..vn> of values
vj ∈ dom(Aj) currently in the relation (current table).

8. Database (DB) is collection of relations. Database
Schema is the set of all relation schemas in the DB.

9. Structured Query Language (SQL) is a declarative
Data Definition Language (DDL): schemas, relations,
constraints and Data Manipulation Language (DML):
updates, queries, that simplifies interaction with DBMS.
SQL relations use bags (multisets) of tuples, not sets.

Keys and Constraints

1. Permissible states of a relation satisfy R-DBMS con-
straints: key constraint (tuples have unique key), entity
integrity (key attributes not NULL) and referential in-
tegrity (FK links shared cross-table attributes); domain (0
≤ age ≤ 100) and semantic attribute integrity constraints
aka business rules (e.g. manager pay > employee salary).

2. Superkey (SK) of relation R is a subset of R’s attributes
that follow the key constraint: in all valid states r(R),
any two distinct tuples t1, t2 ∈ r(R) : t1[SK] ̸= t2[SK].
Superset of PK: PK ⊆ SK. Candidate key is the min-
imal SK: if any attribute removed, it’s no longer a SK.

3. Entity integrity constraint: none of the PK attributes
(even if composite) can be NULL in any tuple of r(R),
otherwise PK would prevent unique identification.

4. Foreign Key (FK) is the set of attributes t1 ∈ R1 that
references t2 in relation R2 if: t1[FK] = t2[PK] or t1[FK]
is NULL and dom(FK) = dom(PK). Can reference any
unique key, not just PK. This ensures referential in-
tegrity (RI) constraint for cross-table relationships.

5. Primary key (PK) uniquely and minimally defines tu-
ples in a relation - arbitrarily chosen out of candidate keys,
more efficient than SK since no redundant key attributes.

6. Insert violation domain: attribute value for new tuple
is outside the domain. key : inserted key already exists
(duplicate keys), referential integrity : FK value of new
tuple references PK value that doesn’t exist in references
relation. Entity integrity : PK value in new tuple is null.

Delete violation: referential integrity : PK value of
deleted tuple is referenced from other relations. Can han-
dle with cascading delete.

Update violation: similar to insert, may violate all con-
straints. Such violating operations can be rejected, or cas-
caded by the DB and the user is informed.

7. Functional Dependencies (FD) allow derivation of
good DB designs. For attribute sets X,Y, Z, constraint
on possible tuples in r(R): X → Y means t[Y] depend on
values of t[X]. Formally t1[X] = t2[X] → t1[Y] = t2[Y].
Real-world semantics (name → address may not hold).

8. Theorem: If K is SK, then K → A for any attributes
A ⊆ R. Conversely, if X → R, then X is an SK.

1

SQL as Data Definition Language

1. Query returns a relation. SQL is case-insensitive unless
string is quoted. Modification commands insert, delete,
update aren’t queries

2. NULLs are not real values, so can’t be compared with ex-
pressions or other NULLs, since they are all different from
each other. Use 3-state logic (True/False/Unknown) -
comparison with NULL yields UNKNOWN. Useful in contexts
where the value is unknown, unavailable, or inapplicable
(e.g. unmarried person’s spouse).

3. Catalog is named dictionary of schemas, constraints and
optimisation stats in SQL environment. Create schema us-
ing CREATE SCHEMA statement (AUTHORIZATION ’admin’)
optionally defines the owner of the schema.

4. Base tables (relations) are created and stored as a file
by DBMS, virtual relations (views) don’t necessarily
correspond to physical/permanent files - used as shortcuts
to data. Both need table name, attributes, their types,
and any constraints Key attribute fields are underlined.

CREATE TABLE students(-- base table relation
studentID INTEGER PRIMARY KEY, -- studentID
studentName VARCHAR(30) NOT NULL,
-- some constraints like FOREIGN KEY/CHECK);

CREATE VIEW viewname -- virtual relation

5. Attribute constraints imposes additional restrictions
on attribute domains based on application semantics:
CHECK(<bool expr>), e.g. CHECK(age>0). Applies restric-
tions on accepted values (condition evaluate to true), can
be added to end of CREATE TABLE to run whenever tuple
is inserted/updated.

6. Named CONSTRAINT <cname><bool expr> is like CHECK,
but stored for easy reference: id INT CONSTRAINT <cname>,
else DEFAULT sets default attr value e.g id INT DEFAULT 1

7. Key constraints: PRIMARY KEY for unique PK, candi-
date keys with UNIQUE allowing NULLs, and non-unique
FK through FOREIGN KEY with optional referential trig-
gered action: SET NULL, CASCADE, SET DEFAULT that de-
fine what happens to the field when referenced value is
modified. Can’t add value to FK attribute if not in PK it
references. FK references values, so attribute names might
vary, fixed operation order: PK exists before insert FK.

number INT PRIMARY KEY -- define PK
name VARCHAR(15) UNIQUE -- candidate key
FOREIGN KEY (ID) REFERENCES Persons(ID) -- RI const-
ON DELETE SET NULL ON UPDATE CASCADE -- raint

8. DROP TABLE <name> deletes the entire relation, including
schema and data, so not simply opposite of CREATE TABLE.

SQL as Data Manipulation Language

1. SELECT <attr1,..> FROM <table> WHERE <condition>
retrieves multisets of relevant tuples from FROM relation
by applying row-selection: iterating over all tuples in
the relation and checking for WHERE boolean clause, then
column-projection: returning attributes from SELECT.

2. SELECT DISTINCT removes duplicates by treating re-
sulting multiset as a set. Wildcard matching
SELECT * FROM fetches all attributes. To check if NULL:
attribute IS(NOT) NULL: ”attribute=NULL” never true.

3. Qualification SELECT table.attribute references spe-
cific attribute from table. If tables in FROM have shared
attribute name, avoids ambiguity.

4. Aliasing: SELECT table <newname> assigns a new name
to the retrieved table. Can be used for qualification with
SELECT T.attribute FROM table T. Can also rename se-
lected attributes: SELECT <attribute> AS <newname>, or
to custom strings using: SELECT name, ".." AS custom
will create an attribute custom, with all values string ”..”.

5. .. WHERE .. ORDER BY <attribute(s)> ASC/DESC orders
result tuples by one or more attributes (asc/desc)ending.

6. WHERE clause supports AND, OR, NOT and parentheses just
like normal boolean conditions. Also support case sen-
sitive string matching with <attribute> LIKE <pattern>
or NOT LIKE, % for any string of ≥ 0 characters, or for
any 1 character. e.g. .. WHERE phone LIKE ’%167- ’

7. INSERT INTO <table> VALUES (<val1>, ..) inserts a tu-
ple of values in same position as table’s attribute list, so
need to remember the schema of the relation. INSERT
doesn’t produce output unless there’s an error.

8. INSERT INTO <table> (A1,...) VALUES (<val1>,...)
inserts partial records (values) for specified attributes,
unspecified attributes are either set to NULL or their DE-
FAULT. Useful if don’t know standard order of attributes.
INSERT INTO likes(color,name) VALUES(’red’,’Bob’);.
Can omit auto-incremented PKs. Inserts can be rejected.

9. DELETE FROM <table> WHERE <condition> deletes rela-
tion tuples that match the condition. Unlike DROP, doesn’t
delete the table itself. DELETE .. WHERE EXISTS <query>
handles more complex cases, EXISTS returns true only if re-
sulting relation is non-empty. Marks all tuples satisfying
WHERE condition then deletes them. If WHERE is unspeci-
fied/abscent - all tuples are deleted.

10. UPDATE <table> SET (<A1=newVal>,..) WHERE <cond>
changes values of specified attributes in certain tuples
of a relation. Can use arithmetic expressions (salary× 2),
provided values, DEFAULT or NULL.

2

Multi-table and Nested (sub)queries

1. Multi-table queries SELECT * FROM table1, table2,..
result in the cartesian product which concatenates each
row from table1 with each row of table2. Size of the result
is |table1| × |table2|. WHERE is optional, but recommended
to reduce output size and make it practical.

2. Cartesian product contains wrong info for the query as
it combines all rows with each other, so restrict with
SELECT * FROM s, c WHERE s.FK = c.PK (equi-join), or
any other attributes that link tuples from both relations.

3. When need to distinguish copies by following the relation
name with name of a tuple-variable. Given Beers(name,
manf), find all same-manufacturer pairs avoiding dupli-
cates using lexicographical order < (theta-join):

SELECT b1.name, b2.name FROM Beers b1, Beers b2
WHERE b1.manf = b2.manf AND b1.name < b2.name;

4. Subqueries are surrounded by parentheses (<subquery>)
equivalent to creating new table T1, and running original
query on it: SELECT name FROM (SELECT * FROM T) T1.

5. Scalar subquery: arithmetic allowed if subquery returns
value (1x1 table): SELECT x FROM..WHERE x=(SELECT x ..)
Scoping rule: attribute refers to the most closely nested
relation with that attribute: x is selected from both query
and the subquery, but they’re separate local variables.

6. IN evaluates to true iff tuple is a member of the relation,
NOT IN is the opposite, both refer to set operators ∈, /∈.
SELECT x,..FROM..WHERE x IN (<subquery>) will select
sub-rows where x appears in resulting subquery bag. Also
works on tuples: ... WHERE(attr1, ..attrn) IN ...

7. Subqueries (SELECT x1 FROM X) vs multi-table queries
X.x1 are not identical. The latter may produce duplicates.

8. ALL/ANY return true if all (∀) or ≥ 1 comparisons are true.
..WHERE <attr/tuple> <operator> ALL/ANY <subquery>.
..WHERE x>ALL(<subquery>.x) selects rows with x greater
than all x’s from subquery. ANY=SOME (can use either)

9. EXISTS <subquery> allows for emptiness testing (∃) on re-
lations, returns true if any value, including NULL is present.
NOT EXISTS is the opposite (∄)

10. If inner query refers to outer query attribute, they are
correlated. In this case, the query is evaluated once per
each tuple in the outer query instead of usual single sub-
query evaluation followed by outer query evaluation.

11. <subquery> UNION/INTERSECT/EXCEPT <subquery>: sub-
query results are multisets, so support ∪, ∩, and \, but by
default set operators remove duplicates (more efficient).
Can force set to be bag with <SetOp> ALL (e.g.UNION ALL)

Join Queries

1. JOIN allows to query data combined from n tables simulta-
neously (n-way joins). However, may produce inaccurate
data when joining on non-foreign-key attributes.

2. A CROSS JOIN B produces cartesian product - every tuple
of A is concatenated with every tuple of B. Equivalent to
SELECT * FROM A,B. Excessive information - use WHERE.

3. A NATURAL JOIN B is equivalent to forming product of
A,B, and keeping tuples whose same-name/type attributes
have same value - avoids repeated columns, unlike inner
join. Can be inner (default) and outer.[

A B
1 2
3 4

]
NATURAL JOIN

B C
2 5
4 7
9 10

 =

[
A B C
1 2 5
3 4 7

]

4. X INNER JOIN Y ON <condition> combines rows from X
with rows from Y if boolean condition satisfied. Same as
SELECT * FROM X,Y WHERE X.a = Y.a. Mostly uses equi-
join ”=”, but allows any operator. Unless specified, JOIN
defaults to inner join.

5. Inner joins can lose information as the tuple that doesn’t
join with any tuple from the other relation disappears from
the result. Prevented by padding such tuples with NULL
(dangling tuples). Left/right outer join keeps such dan-
gling tuples from left/right.

6. X JOIN Y ON <condition>, or theta join, extends nat-
ural, inner joins to allow more complex conditions, e.g.
functional expressions. ON need not use matching column
names, can refer via quantification and aliasing.

7. A LEFT/RIGHT/FULL OUTER JOIN B ON <condition> pre-
serves tuples from first/second/both tables and joins them
with rows from the other table upon successful condition,
and a row of NULLs otherwise. Can use NATURAL OUTER,
making ON optional.[

A B
1 2
3 4

]
OUTER JOIN

[
B C
4 5
6 7

]
=

 A B C
3 4 5
1 2 NULL

NULL 6 7


rows: natural join, left and right outer joins respectively.

8. Can use USING instead of ON to specify attributes
to equi-join on: A JOIN B USING (id, name) is equiv-
alent to: A JOIN B ON (A.id=B.id AND A.name=B.name).
USING deduplicates columns unlike ON.

3

Aggregation Queries

1. Arithmetic SUM, MAX, MIN, AVG and COUNT that counts num-
ber of non-NULL attribute values can be used within queries
to obtain aggregate values for matching tuples. But,
SELECT COUNT(*) FROM A counts all A’s rows.

2. NULL never contributes to aggregation queries. If
all values in column are NULL then aggregations return
NULL except for COUNT that returns 0, never min/max.
Use COUNT (DISTINCT <attribute>) to discard duplicates.

3. GROUP BY <attribute> groups rows by attributes, so tu-
ples with matching attribute values are combined. Sum-
marises data using aggregate functions across each group
instead of the entire query NULL counts as a separate group.
e.g. SUMming revenues within each company branch.

SELECT branch, SUM(revnue) FROM Comp GROUP BY branch

4. Attributes in the GROUP BY clause must be listed in the
SELECT clause. If any aggregation is used, each element of
SELECT must either be aggregated or contained in GROUP
BY attribute list, else error. Filter out rows, group them,
then apply aggregation. Can group by multiple attributes.

5. Selective grouping GROUP BY .. HAVING <condition> elim-
inates aggregated groups not satisfying condition. WHERE
does so before grouping, so aggregate functions can’t be
compared in WHERE clause - only in HAVING clause.

SELECT beer, AVG(price) FROM Sells GROUP BY beer
HAVING COUNT (bar) >= 3 OR beer IN (<subquery>)

HAVING clauses have only grouping/aggregated attributes.

Views and DDL

1. SQL stores schemas within a catalogue/dictionary, which
can be accessed using DESCRIBE. Tables are stored within
schemas, even if not specified, still exists inside ”working”
schema. Most DBMSs store metadata in special schema
INFORMATION SCHEMA - standard.

2. Assertions are a type of constraint applied to the whole
database state enforced by DBMS. Satisfied if no combi-
nation of tuples in database violates it. More heavyweight
than normal constraints, so used as a last resort. Define
with: CREATE ASSERTION <name> CHECK (<condition>).
Checked on updates, e.g. no student exceeds 5 modules.

3. DROP TABLE (IF EXISTS) <name> CASCADE/RESTRICT de-
stroys table and the schema - modifying catalog CASCADE
removes FK constraints of any table that references the
one being deleted. RESTRICT drops iff no dependencies,
else throw error. IF EXISTS doesn’t throw an error if ta-
ble doesn’t exist.

4. ALTER TABLE ADD/DROP/RENAME COLUMN/RENAME TO <new>
to add, remove or rename columns, or the table itself,
ADD/DROP CONSTRAINT <constName> to add or remove con-
straints. Can also ALTER COLUMN <attr> TYPE <newType>
to change attribute datatype. These modify original table.
New columns initialised to NULL unless specified.

ALTER TABLE tableName
ADD/DROP COLUMN <attr> -- add/destroy column
ALTER COLUMN <attr> TYPE <newtype> -- datatype
RENAME TO <newTableName> -- rename table
RENAME COLUMN <attr> TO <newAttrName> -- column
ADD/DROP CONSTRAINT <constraintName>

can’t modify constraints: must drop old, then add new.

5. CREATE (MATERIALIZED) VIEW <name> AS <query> cre-
ates a virtual/real(materialised) table derived from other
tables or views. Useful for frequent queries or authorisa-
tion without exposing original table. Queried like tables.

6. If VIEW replicates a table, can enforce constraints virtu-
ally without overhead of creating/dropping a real table,
reflects updates from the base relation, hence infeasible
to alter views as the changes don’t propagate back to their
base relation. Materialised tables need storage and incre-
mental updates.

7. DBMS uses a spliced expression tree of relational alge-
bra operations when interpreting queries as if the view
were a base table. Optimise queries by pushing selections
down the tree and eliminating unnecessary projections.

Relational Database Design

1. Relational Model vs SQL Model uses: relation=table,
attribute=column, tuple=row. Uses set theory to develop
a good model of the data that’s easy to understand, query
and manipulate. Adhere to the following guidelines:

2. Guideline 1: make easy to understand: each row in
relation should represent one relationship instance (FD)
or entity. Only refer to different entities with foreign keys.

3. Guideline 2: remove redundancy to avoid waste and
inconsistency: don’t store same things twice - refer to
them using FK. Redundancy may cause update, insert
and delete anomalies - have to prevent.

4

4. Update anomaly: modification to a row/column causes
inconsistency in the database (only one of the related
columns modified). Insert anomaly: creating a row
where value of an attribute isn’t known, using NULL isn’t
good. Finally, delete anomaly: deleting a tuple deletes
all its values and information linked to it.

5. Guideline 3: no NULLs - they waste storage and com-
plicate queries (may cause ambiguity). Under-utilised at-
tributes (those where many values are NULL) shouldn’t be
included in the base relation, instead use Decomposi-
tion to split the table into multiple tables without losing
adding any incorrect info to avoid anomalies.

6. Guideline 4: no spurious tuples (incorrect info): when
decomposed tables are merged, they should result in the
original table, so use keys as join attributes (PK/FK).

Functional Dependencies

1. A formal measure of the ”goodness” of relational design
can be measured using functional dependencies. Use
them to define keys (normal forms for relations). FDs can
express constraints such as attribute to attribute links that
can’t be expressed with composite keys.

2. FD’s are constraints derived from meaning and interrela-
tionships of data attrs of the relation schema R.

3. Given a set of attributes X,Y ⊆ R, say X → Y , means:
determinant X functionally determines dependent Y
and holds if values of Y are uniquely determined by values
of the X component. If X is a key, then ∀Y ⊆ R : X → Y .

4. FD X → Y : two rows sharing X must share Y value,
for tuples t1, t2 ∈ r(R): t1[X] = t2[X] → t1[Y] = t2[Y].
Formal notation: {A1, .., Am} → {B1, .., Bn}, skip curly
brackets if m = n or n = 1: e.g. A → {...} or A → B.

5. FD is a property of the relation schema, not of a state:
can disprove FD with a counter example (e.g. same name
maps to multiple surname) - can’t prove by example (if the
current state has some FD that can be broken by adding
new tuples, it’s not an FD).

Normalisation

1. Normalisation theory ensures easy understanding and
retrieval of info, helps avoid redundancies. In unnor-
malised relations, data may be repeated within columns.

2. Start from universal all-attribute-listing relation, pro-
gressively remove redundant data to avoid anoma-
lies. Rejoin at each query to avoid information loss using
Lossless (non-additive) joins and dependency preser-
vation. Remember that JOIN is an expensive operation!

3. Can quantify how efficient database design is using
Normal Forms (NF). Have 1st, 2nd, 3rd, Boyce-Codd,
4th, 5th, 6th NFs. If relation R is of ith NF then it’s also of
normal form j < i. NFs up to BCNF depend on FDs.

4. 1NF (”the key”): requires all attributes and their do-
mains to be atomic - without substructures (e.g. lists),
composite values e.g. ”10, 20”, or repeating groups (mul-
tiple rows sharing same non-key attribute values), and a
key. Can be thought of having a database for each non-key
value. Might have insert, update and delete anomalies.

5. 2NF (”the full key”): no key attribute is partially func-
tionally dependent on any candidate key. For all key K
and non-key A attributes: ∀K,A ∈ R: K → {A} is ir-
reducible, or ∄K ′ ⊂ K : K ′ → {A}. Prevents 1NF
anomalies and dependencies on subsets of keys.

6. 3NF (”and nothing but the key”): non-key attributes de-
pend only on the key. No transitive FDs such as key →
drug → sideEffect since the latter depends on both the
key and the drug - should separate the relations.

7. BCNF: if X → A then X is a superkey (the only arrows
are ”out of superkeys”). Provides lossless-join decomposi-
tion but not necessarily dependency preservation.

8. Set of relation schemas {R1, .., Rk} is a lossless-join de-
composition of relation schema R in relation to its set
of FDs F if for all legal (r satisfies F) instances r of R, it
holds that: r = πR1(r) ▷◁ πR2(r) ▷◁ . . . ▷◁ πRk

(r). In SQL:

r = (SELECT R1 FROM r) JOIN . . . (SELECT Rk FROM r)

Instance r is legal if it satisfies FD set F defined on R.
Joining decomposed relations R1, ..Rk should yield (recon-
struct) precisely r - no superfluous or missing tuples.

9. All implied FDs that can be logically deduced from origi-
nal FD set F are called the closure/cover F+ of F . This
is known as completeness property. They can be de-
rived using Armstrong’s inference rules:
• (IR1) Reflexive: Y ⊆ X ⇒ X → Y e.g. (XZ → X)

• (IR2) Augmentation X → Y ⇒ XZ → Y Z
• (IR3) Transitive: (X → Y) ∧ (Y → Z) ⇒ X → Z

Where XZ
def
= X ∪ Z. These rules hold ∀ legal r of R.

10.Proof of IR1: Given Y ⊆ X, suppose ¬(X → Y), then
∃t1, t2 ∈ r[R] s.t. (t1[X] = t2[X]) ∧ (t1[Y] ̸= t2[Y]). Since
X ⊇ Y , then X = ZY for some set of attributes Z. Now,
(t1[X] = t2[X]) ⇒ (t1[ZY] = t2[ZY]) ⇒ t1[Y] = t2[Y]. ⊥

11.Proof of IR2: Given X → Y , ∀t1, t2 ∈ r(R) it holds
that t1[X] = t2[X] and t1[Y] = t2[Y]. Now consider
t1[XZ] = t2[XZ] for some Z ⊆ R, so t1[Z] = t2[Z], so
combine to get t1[Y Z] = t2[Y Z].

5

12. IRs derived from IR(1-3) by completeness property:
• Decomposition: X → Y Z ⇒ (X → Y) ∧ (X → Z)
• Union: (X → Y) ∧ (X → Z) ⇒ X → Y Z
• Pseudotransitive: (X → Y) ∧ (WY → Z) ⇒ WX → Z

13.Proof of Decomposition: Given X → Y Z: Y Z → (Y,Z)
by reflexivity, so X → (Y,Z) by transitivity.

14.Proof of Union: Given X → (Y, Z) then XX → XZ
and XZ → Y Z by augment., X → Y Z by transit.

15. Test for non-additive join ensures no superfluous data:
R1, R2 is a lossless decomposition of R in F if either
R1∩R2 → (R1−R2) or R1∩R2 → (R2−R1) exist in F+.

16.Dependency Preservation: verify that decomposition
of relation R into {R1, ..Rn} preserves all FDs in F by
ensuring projected FDs F1, ..Fn satisfy (∪n

i=1Fi)
+ = F+.

Relational Algebra

1. Relational Algebra (RA) defines declarative SQL op-
erations using procedural set-theory-oriented expressions.
Minimal set of operations is {σ, π, ρ, ,∪,−,×}, everything
else can be expressed through them. Closure property:
RA takes relations as input outputs relations.

Name Symb Example Equiv SQL
Projection π πA SELECT A
Selection σ σc WHERE c
Product × R× S R CROSS JOIN S

Natural Join ∗ or ▷◁ R ∗ S R NATURAL JOIN S
Join ▷◁ R ▷◁a=b S R JOIN S ON a=b

Set
∪
∩
−

R ∪ S
R ∩ S
R− S

UNION
INTERSECT
EXCEPT

Rename ρ ρR2(a,b,c)R1 ... AS ...
Division ÷ R÷ S see point 9

2. Projection (π<attr1,..>(R)) selects specified attributes,
contextually reducing the schema. If attribute list li
doesn’t have keys, result may contain duplicates, but RA
uses sets, so they are eliminated. If l2 ⊂ l1 then πl1(πl2(R))
is illegal, as nested projection will contain less attributes.
Only works if l1 ⊆ l2. CHECK THE ORDER!!

3. Selection (σ<condition>(R)): independently apply condi-
tion to each tuple in R, select those evaluating to True.
Have commutativity: σc1(σc2(R)) = σc2(σc1(R)) and
Sequencing: σc1(. . . σcn(R)) = σc1 ∧ · · · ∧ σcn(R) for any
condition ci.

4. Renaming (ρ<newName1,..>(R)) renames attributes attri
to newName1. Rename the relation itself with with ρS(R),
or relation with attributes using ρS<newName1,..>(R).

5. Relations R(A1, .., Am) and S(B1, .., Bn) are type-
compatible if m = n, dom(Ai)=dom(Bi) for 1 < i < n.
Hence, can reliably perform set operations/theory.

6. Join (▷◁) supports theta-join condition θ ∈ {=, ̸=, <,≤, >
,≥} applied as AiθBj . Eliminates spurious tuples unless
equi-join (”=”), which might entail duplication.

7. Cross Join (×) of R(A1, .., Am) × S(B1, .., Bn) is a re-
lation Q(A1, .., Am, B1, .., Bn) of size |Q| = |R| × |S| s.t.
each tuple in Q is a combination of an m-tuple from R
and an n-tuple from S. However may produce spurious
tuples, hence use σ after cross join.

8. Natural Join (∗): join attrs must have same name, so no
duplicates, often preceded by ρ to avoid ambiguity. The
shared attributes are only projected once.

9. Division (R÷T) gives all entries in R that have an entry
for all values in T . E.g. for each student’s subject, sub-
tract subjects they study from ones in T , if no subjects in
T left, they must study all of them, so return their id.

SELECT id FROM S WHERE NOT EXISTS
((SELECT Topic FROM T) EXCEPT
(SELECT Topic FROM R) WHERE R.id = S.id);

Let S(X) be a set of relations on X where X ⊆ Z. Write
Y = Z − X, then division R(Z) ÷ S(X) is equivalent to
relation T (Y) s.t. for ts = tR[X] and t = tR[Y] ∈ T (Y)
iff ∀ts ∈ S : ∃tR ∈ R. Simply, t comes from a tuple of R,
keeping only attributes in Y , and it must be present in all
combinations of tuples from S as a tuple in R. REVIEW

10. ”Skinny” relation is one with a minimal set of attributes,
typically reduced to only those necessary for a specific
query or operation, often through projection to eliminate
redundant or unused columns, so less wide (”skinny”).

11.Aggregate functions: given list of attributes of R and
a function list f1, ..fn of form <<function><attribute>>
pairs, use aggregation (sum avg, max, min, count) to com-
bine such functions: <grouping attrs> ℑ f1, .., fn(R)

Relational Calculus

1. Relational calculus (RC) helps define and understand
the relational model through predicates and propositions.
RC is declarative with true/false statements that describe
relationships among entities such as data tuples. RC con-
cerns either tuple or domain.

2. Predicate is a declarative statement that evaluates to
true or false. It describes the meaning of a sentence, in
case of RA: what (not) to retrieve. Statements can be

6

composed of other statements connected with logical op-
erators (∧/ ∨ /¬). Variables can be quantified (∀/∃).

3. Substitution: assign a value/designator for a parame-
ter/variable within a predicate. Instantiation: substi-
tute all parameters/variables in predicate. Proposition
is an instantiated predicate.

4. Predicate intension (meaning): properties/qualities as-
sociated with the statement. Extension: set of all in-
stantiations for which the predicate holds true. Intension
is specific, extension is generic/wide-ranging.

5. RC vs RA: predicate ≃ schema, proposition ≃ tuple, ex-
tension ≃ relation state. COME BACK TO THIS

6. Closed world assumption: what is not currently known
to be true (in the DB) is assumed to be False.

7. Codd’s Theorem: RA and RC are equivalent in their ex-
pressive power. Languages equivalent in expressive power
to RA are relationally complete: SQL, RC.

Tuple Relational Calculus (TRC)

1. Tuple Relational Calculus (TRC): variables range
over tuples (variable=tuple). To define queries with RC,
need to know: 1. range relation: one over which tuple
variables operate, 2. condition or formula used to select
tuples and 3. attributes to be retrieved per selected tuple.

2. Restricted first order logic formula F over tuples:
F = {t1.A1, .., tn.An | COND(t1, .., tn)}

where COND is a formula with free variables (tuples) t1, ..tn
not tied to a relation, so can take any possible value.
Specify range relation R they come from:

F = {t.A1, ..t.An | R(t) AND COND(t.A1, ..t.An}
now variable t is explicitly tied to relation R.

SELECT t.A1,..t.An FROM R(t) WHERE COND

3. Conditions can specify range relation, selection condition
or inner join condition. Attributes preceding ”|” are equiv-
alent to projection π. All free variables must precede ”|”.

4. Atomic formulas: for relation name R and tuple vari-
able ti, constant c and op ∈ {=, <≤, >,≥, ̸=}:

R(ti), (ti.A op tj .B), (ti.A op c), (c op ti.A)

5. Compound Formulas: for nested formulas Fi:
NOT(F), F1 OR F2, F1 AND F2, (∀t)F , (∃t)F

6. Free variables range over all possible tuples, and can
take any value. Quantifiers (∀,∃) are bound variables,

fixed within their scope (all/some).
Formula Equivalent

(∀x)(P (x)) ¬(∃x)(¬P (x))
(∃x)(P (x)) ¬(∀x)(¬P (x))

(∀x)(P (x) ∧Q(x)) ¬(∃x)(¬P (x) ∨ ¬Q(x))
(∀x)(P (x) ∨Q(x)) ¬(∃x)(¬P (x) ∧ ¬Q(x))
(∃x)(P (x) ∨Q(x)) ¬(∀x)(¬P (x) ∧ ¬Q(x))
(∃x)(P (x) ∧Q(x)) ¬(∀x)(¬P (x) ∨ ¬Q(x))

where ∀x : P (x) ≡ (∀x)(P (x)): all x satisfy predicate P .

7. Antecedent ⇒ Consequent is logical implication.
UNIVERSAL QUANTIFICATION EXAMPLE

8. Safe RC expression always returns finite number of tu-
ples. Ensure through stating the range relation. Equiv-
alent to relational algebra. Example of unsafe relation:
{t|NOT (EMPLOYEE(t))}: t could be any tuple in universe.

Domain Relational Calculus (DRC)

1. Domain Relational Calculus (DRC): variables range
over attribute domains. {x1, ..xn | COND(x1, ..xn)}. Only
the desired attributes preceding ”|” are allowed to be free
variables in COND, but it may have other bound variables.

2. Atomic formulas: for relation name R of arity k, at-
tributes xi, constant c and op ∈ {=, <≤, >,≥, ̸=}:

R(x1, ..xk), (xi op xj), (xi op c), (c op xi)

3. Compound Formulas: for nested formulas Fi:
NOT(F), F1 OR F2, (∀t)F , (∃t)F

JDBC and Procedural Languages

1. Can access DBs through SQL commands, file/batch, ap-
plication programs. DB interfaces can be embedded SQL
commands, libraries, or DB programming languages.

2. Client-Server Architecture comprises a DB server (e.g.
postgres) listening on same network port as clients using
interactive queries and application programs (e.g. psql).
Can embed SQL commands in host languages (Java/C
etc.), and execute them using JDBC API.

3. Impedance Mismatch problem: host (Java) blended
with DB sublanguage (SQL), structurally different. Need
binding for datatype translation, convert SQL bags of tu-
ples to Java classes. Loop through tuples using a cursor.

4. One Java program can have multiple connections to multi-
ple databases handled by driver manager class compris-
ing getDriver, registerDriver, deregisterDriver etc.
Mostly use Pure Java driver for direct-to-database, but
can use JDBC-ODBC bridge/Native-API/Middleware.

5. JDBC main classes: Connection, Statement, ResultSet.

7

https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs258/relational_calculus-2024.pdf

6. Need a Connection object for each DB connection, cre-
ated using driver manager’s getConnection() that allows
to connect to specific DB sources using urls, providing au-
thentication to DBMS.

JDBC query walkthrough

import java.sql -- import the sql lib
Class.forName("DriverName"); -- import modules
passwd = readentry("input passwd: "); -- for login:
Connection con = DriverManager.getConnection(<url>

+ <user> + <passwd>); -- establish a connection
String query = "SELECT ... WHERE ssn=?";
PreparedStatement p=con.prepareStatement(query);
p.clearParameters; p.setString(1,readentry());
ResultSet r = p.executeQuery();
while (r.next()) {println(r.getString(1);}

7. Statement class comprises subclasses: PreparedStatement
and CallableStatement. SQL queries require both to ex-
ecute within JDBC and convert the output to ResultSet
table-like class with row tuples and column attributes.

8. JUnixSocket interprets JDBC sockets as ports allowing
to send precompiled SQL commands PreparedStatement
(e.g. ”SELECT .. WHERE x=?”) where ”?” are arguments,
like a partially applied function. Can bind parameters to
Java variables using set<Type>(idx, val) (e.g setString).
Prep. stat. avoid runtime errors since already compiled.
Safe unlike unchecked createStatement(<query>).

9. Every statement has an executeQuery used for projection
(SELECT) returning ResultSet object, and executeUpdate
for all other operations, returns number of affected tuples.
ResultSet cursor initially positioned right before the 1st

tuple in result, first r.next() retrieves the first tuple.

10. To keep track of the index (tuple #), use a pointer called
cursor r, can ”scroll” using r.next().

11. Surround JDBC calls in try/catch to catch errors e.g.
driver not installed, failed connection, wrong credentials,
server down, statement was created or closed, permission
issue, malformed query, constraint violation etc.

12. (create/prepare)Statement command supports RSType:
navigation (e.g. forward-only, scrollable) and sensitivity
to parallel updates and RSConcurrency that determines
whether the ResultSet is read-only or updateable.

13. ResultSet type can be scrollable (doubly-linked list),
positionable (array) and sensitive (updateable?)

14. Scrollability and sensitivity are independent of updata-
bility. There are six valid ResultSet mode combinations
(three types × two concurrency levels), but not all are
supported by every DBMS. When updating, all columns
(unless defaulted) must be included in the ResultSet.

15. (get/update)Int(String column(Name/Index) method
is contained within each of the following methods. It
retrieves or updates row components of each attribute
addressed by its name or index.

Method Description

beforeFirst() Moves cursor just before the first row.

afterLast() Moves cursor just after the last row.

first() Moves cursor to the first row.

last() Moves cursor to the last row.

absolute(int row) Moves cursor to the given row.

relative(int row) Moves cursor forward/backward by given rows.

previous() Moves cursor to the previous row.

next() Moves cursor to the next row.

getRow() Returns current row number.

moveToInsertRow() Moves cursor to a special row for inserting new data.

moveToCurrentRow() Moves cursor back to the current row.

updateRow() Updates RS row by modifying corresponding DB row.

deleteRow() Deletes the current DB row in RS.

refreshRow() Refreshes data in the current row from the DB.

cancelRowUpdates() Cancels all updates to the current row.

insertRow() Inserts a row into DB after moveToInsertRow() call.

16. By default, DB updates are auto-commited, but to avoid
risk, can manually conn.commit() or conn.rollback() af-
ter doing con.setAutoCommit(false).

17. Favour declarative code to procedural. SQL can consis-
tently enforce all appropriate logic. Once you’re done with
connections, statements and result sets, need to close them
with <thing>.close(), else might run out of cursors.

DB Programming architecture

1. Client applications use API to access server databases via
standard interface. Between client and DB server there is
some DB application - if embedded within the database -
more efficient, can write functions, if not - more secure.

2. Can use persistent stored modules PSM procedural code
(e.g. if .. then ..), but it’s inefficient. Triggers allow for
more complex checking/rejecting of new data - update DB
when an action occurs, but inefficient.

3. Embedded SQL within in some languages use precom-
piler and preprocessor to parse SQL code.

4. Communication variables: SQLCODE returns 0 when
statement executed successfully, 100 when no more avail-
able query data and < 0 upon an error. A more modern
SQLSTATE: string of 5 chars returning ’00000’ upon suc-
cess and ’02000’ when no data.

5. To retrieve tuples, can use INTO for single tuple and
FETCH for whole rows, then browse using cursors.

8

Prepared Statements

1. SQL injection: attacker injects a string that changes the
SQL command. Can cause unauthorised data manipula-
tion/retrieval or execute harmful system commands.

2. Mitigation: only allow known good data: remove SQL
keywords from input strings (can be limiting) or replace
escape characters (e.g.”’” with ”\’”) to prevent further
command injections (too cumbersome, use a library). Can
keep the schema secret (attackers can still guess it), or
keep errors vague, e.g. don’t tell user value for ’username’
column as now they know of this column, again, obscure.
Best to use access control (AC).

3. Prepared Statement prepareStatement(<query>)
parses the query, and compiles it’s plan (no data needed).
Now, DBMS plugs input data into compiled query. Sep-
arates executable query from parameters (that shouldn’t
be interpreted as code). No need to remove keyword-
s/escape characters, less complex/error-prone, immune to
SQL injection. Moreover, more efficient since don’t need
to recompile per user query.

Database Security

1. DB security concepts: systems, law, ethics, politics, so-
ciety and aim to maintain CIA: confidentiality (disclo-
sure), integrity (corruption) and availability (DoS) us-
ing access control, inference control (access to stats about
the data, not the data itself), flow control (prevent read
from protected then write to unprotected) and encryption.

2. DBS has DB security and authorisation subsystem.
Database security mechanisms can be discretionary
(grant/revoke access privileges) or mandatory (classifi-
cation levels for users and data items). MAC and DAC
can be combined.

3. DB administrator (DBA) manages the DB including
its security through: account creation (users/groups/soft-
ware accounts), discretionary privilege granting/revoca-
tion and mandatory security level assignment.

4. System Log records each operation applied to DB. It’s
used to recover from transaction failure/system crash and
serve as an audit trail.

5. DB audit is performed after suspicious activities are de-
tected, reviews the log (audit trail) for all accesses and
operations applied during the relevant period.

Discretionary Access Control (DAC)

1. Discretionary Access Control (DAC) can use queries
to GRANT and REVOKE privileges. Privileges target account
level : what user can run (\du in postgres), and relation
level : who can access the relation and the types of opera-
tions they’re allowed to perform on it (\l).

2. Access matrix model has subject rows (accounts) and
object columns (relations, tuples, etc). M(i, j) represents
types of privileges that subject i holds on object j. Imple-
mented by RDBMS, need not be stored in actual relation.

3. Privilege control: each relation has an owner (typi-
cally the creator) account with full privileges. In SQL,
can assign owners to whole schemas (collections of ta-
bles/views/procedures), or multiple schemas (like subfold-
ers) within database (not in MySQL). Owner can pass
privileges on any of their objects to other users.

CREATE SCHEMA example AUTHORIZATION jonny;

4. Can grant SQL privileges on retrieval (SELECT), mod-
ification (INSERT, UPDATE, DELETE) or referencing
with FK (REFERENCING). Commands INSERT and UPDATE
are attribute-specific, so can specify their scope with
<table>(attr1,..), but SELECT, DELETE aren’t, use views
to scope them.

GRANT <command1,..> ON <table>(A1,..) TO <user>;

5. DAC can use views, for example, to access a subset of ta-
ble’s attributes, so create a view and grant SELECT on it.
Same granting commands apply as for any table.

6. Can grant privileges temporarily, cancel or revoke them.
GRANT OPTION propagates same privileges to others with-
out knowledge of the owner, if revoked, also revoked from
the propagations based on it.

GRANT .. ON .. TO .. WITH GRANT OPTION;

7. Some DBMSs (not SQL) allow users to impose horizontal
and vertical propagation limits. Horizontal limit: GRANT
OPTION grants permissions to ≤ i other accounts.
i = 2 A⇝ B1 then A⇝ B2 but now A⇝ ∅.

Vertical limit of j: account can grant its privilege only
to those with vertical limit ≤ j. Vertical limit of 0 is same
as having no GRANT OPTION.
i = 2 A1 ⇝ A2 then A2 ⇝ A3 but now A3 ⇝ ∅.

Mandatory Access Control (MAC)

1. DAC is mostly all-or-nothing (full/no access per command
unless with views), but used by most commercial DBMSs.
But might need to classify data and users into security
classes for more fine-grained control, handled by MAC.

9

2. Bell-LaPadula model applies security classes:
Top Secret(TS) ≥ Secret(S) ≥ Classified(C) ≥ Unclassified(U)

each subject S has clearance class(S), each object O has
access classification class(O). Enforces restrictions:

3. Simple security: S not allowed to read O unless class(S)
≥ class(O) (”no read up”). Confinement or start prop-
erty: S not allowed to write O unless class(O) ≥ class(S)
(”no write down”), enforcing flow control.

4. Multi-level security: assign security classifications to
attributes; tuple classification (TC) = max attribute
classification within the tuple. Apparent key would be
the PK if ignored security classes, but same-key tuples
may have different TCs (polyinstantiation), so the new
real key is PK+TC.

5. Multi-level relation schema R(A1, C1, .., An, Cn, TC):
for attributes Ai, security classifications Ci and the tuple
classification.

6. Filtering (class(S) < class(O)) hides classified data by
putting NULL in its place. All attributes in apparent key
must share security classification minimum within that tu-
ple and be non-NULL, so if any non-key attribute can be
seen, then the full apparent key has to be seen too.

7.

DAC MAC

Flexible, more suitable in
many domains

Rigid, requires security
classification

Vulnerable to attacks, e.g.
embedded Trojan horses

Prevents illegal flows of
information

No mechanism controlling
info usage once accessed

Controls information flow
based on security labels

Better trade-off between
security and applicability
in most situations

Necessary for strict infor-
mation control (e.g., mili-
tary, government)

8. Role-Based Access Control (RBAC): a role is a
group of users/accounts with specific privileges. Can
CREATE/DESTROY ROLE <role>, manage their privileges:
GRANT .. TO <role>, or establish permission hierarchy
with GRANT ROLE <fromRole> TO <toRole>, now toRole
inherits all the permissions of fromRole. Often used in
industry, can be combined with MAC or DAC.

9. Statistical DB represents aggregated/statistical data
about populations (subgroups) to prevent direct access to
confidential details about individuals. Population is a
set of tuples that satisfy some condition. Queries only
concern populations - no individual row retrievals - only
statistical aggregate functions (AVG, SUM,..).

10. Inference attack: series of statistical queries may reveal
individual values, e.g. filter the population until 1 person

left, then request average data on them. Prevent by using
a threshold on population size, prohibit repeated queries
on same population, partition records into larger groups
(disallow queries on their subsets), or introduce inaccura-
cies (noise) to the results with randomised responses.

11.Randomised response: insert noise to ensure plausi-
ble deniability. Flip a coin before recording each binary
value, if heads - record the truth, if tails, record ”YES”.
If p is percentage of ”NO”, then the correct percentage of
”NO” is 2p as 50% will get tails (50% of YES is useless).

12.Flow Control: flow between X and Y happens when
program reads from X and writes into Y . Need to
specify flow policies: regulate distribution of informa-
tion among accessible objects and specify allowed channels
along which info is allowed to move.

13.Crude binary classification: confidential (C) and non-
confidential (N) information classes, allow all flows except
C ⇝ N . Assign security class to each program and mem-
ory region, read if program’s class is ≥, and write if ≤ than
the memory segment. No read up, no write down.

14.Explicit flow has direct class assignments l = h mod 2.
Implicit flow involves conditionals: if (h==1) then l = 1.

15.Oracle label-based security: row-level access control.
Users and data have labels (security level) representing ac-
cess control policies, which are executed along each query.

16.Virtual Private Databases (VPD): each DB object is
bound to a security policy (procedure stored in the DB).
Execution of a policy adds a predicate (WHERE clause) to
user’s SQL statement, thus modifying user’s data access.

10

Dimension Discretionary Access Control
(DAC)

Mandatory Access Control
(MAC)

Decision Authority Object owner (creator) decides who
gets which rights

Central policy or OS kernel enforces
based on security labels

Enforcement Mecha-
nism

ACLs, GRANT/REVOKE, access-
matrix model

Security labels on subjects
& objects + fixed rules (e.g.
Bell–LaPadula)

Granularity Per-user or per-group; per-object
and, with column-level grants, per-
attribute

Per-classification level (coarser)

Delegation Users can grant privileges to
others (optionally limited with
GRANT OPTION)

Users/processes cannot change or
override labels

Flexibility High: ad-hoc sharing, easy to ex-
tend

Low: policies must be defined up
front and are difficult to change

Information Flow Con-
trol

None—once a user has rights, data
can flow freely

Built-in: prevents read-up and
write-down flows

Susceptibility to At-
tacks

Vulnerable to Trojan horses and
privilege escalation

More resistant—users/processes
can’t grant rights they don’t have

Typical Use Cases Commercial DBMSes, collaborative
environments

Military/government, high-
assurance, regulated environments

Schema Changes
Needed

None (works on existing relations
via ACLs and views)

Requires labeling of data & users;
schema extended with classification
attributes

11

