Lecture Notes
(CS257 - Advanced Computer Architecture

Intro |
1.

RAM |
1.

Levels of parallelism (LPs) include Data-level DL that op-
erates many data items at the same time, and Task-level
TL that operates many tasks in parallel. They include:

e TLP thread-level is multithreading (DL, TL).

e RLP request-level handles decoupled requests parallelly.
e ILP instruction-level parallelism uses single thread for
multiple instructions at once (DL).

e Vector Architectures, GPUs apply single instruction
to collection of data in parallel (DL).

Flynn’s Taxonomy: Single instruction stream, single/-
multiple data stream (SISD/SIMD) provide instruct/-
data LP. Multiple instruct streams, single/multiple data
streams (MISD/MIMD) provide thread/request LP.

Performance measures: response time, throughput.
Execution time exe_time: wall-clock/CPU time. Speedup
of X rel to Y: exe_time(Y)+exe_time(X). Benchmark
suites (SPECO06fp), not kernels or synthetic benchmarks.

Registers ..
Cache
&
& Main Store
& Magnetic Disk

Capacity

Spatial/temporal locality: if memory loc referenced -
likely that nearby/same loc will be referenced again soon.

DRAM vs SRAM, DDR, read-only/mostly

Dynamic Random Access Memory (DRAM) (main
memory, 4-512MB) is volatile main memory composed of
one capacitor and one transistor per bit, requiring peri-
odic refresh cycles to retain data. Typical DRAM modules
range in capacity from about 4 MB to 512 MB.

An M-bit W x B DRAM block is organised as an array
of W words, each B bits wide, such that W x B = M.
Access requires B data pins and logy W address pins. To
reduce decoder complexity, the address is split into row
and column parts, treating the memory as a 2D matrix.

Wo

Select

}

= ow —oI— owa

Writing

Select

RIW = high —Pm—v Data Out

Reading

2222

TLP-RLP-ILP-DLP, SISD-SIMD-MISD-MIMD 3. The select signal activates a specific memory cell, r/w de-

termines the operation (read or write), and data serves as
the input/output bus. This layout is most efficient when
the matrix is roughly square, not excessively narrow /wide.

Multiplexed DRAM uses [%1 address pins.

Interleaved Memory is a grouped collection of DRAM
chips comprising n independent banks that can service n
requests simultaneously (memory multithreading kinda).
Distr. addr among n memory units is n-way interleav-
ing. Effective when num of mem banks equals or is integer
multiple of num of words in cache line.

Bank 0 Bank 1 Bank 2 Bank 2¢-1
word address

bank

select T T 1 T) T
MisBs
—

m bits k bits
Y

Data bus

SDRAM, or synchronous DRAM sends data to proces-
sor at its bus clock speed to avoid wait states caused by
DRAM access time (time before data becomes available).

Double Data Rate (DDR) SDRAM sends data to pro-
cessor twice per bus clock cycle (both rising and falling
edge) unlike normal SDRAM that only sends data once
per rising edge. Uses higher clock rate on the bus to in-
crease the transfer rate.

Prefetch buffer is a memory cache within DDR
SDRAM, allowing to preposition multiple (e.g. 2, 4, 8,..)
bits to be transferred to I/O buffer in separate pipelines
at once: 2-n prefetch architecture.

Burst mode in SDRAM eliminates the address setup
time and row/column precharge time after the first ac-
cess. Has multiple-bank internal architecture. Mode
register specifies the burst length. Performs best when
transferring large blocks of data serially.

Memory Type Category Erasure Write Mechanism Volatility

Electrically at byte-

Read-write
level

Random Access Memory (RAM) Electrically written Volatile

Read-only Memory (ROM) Not possible Mask written

Read-only

Programmable ROM (PROM) Not possible

Erasable PROM (EPROM) UV-light at chip-level Non-volatile

Electrically written
Electrically at byte- Y

Electrically Erasable PROM
(EEPROM level

Read-mostly

Electrically at block-

Flash Memory level

10.

11.

12.

13.

SRAM (L2 cache, 64KB-1MB) is a volatile bi-stable flip-
flop, doesn’t require refresh cycle. Much faster, more com-
plex, less capacity, expensive compared to DDR.

Embedded DRAM (eDRAM) is intermediate between
on-chip SRAM and off-chip DRAM. Usually integrated on
Multi Chip Module (MCM) of an Application-Specific in-
tegrated circuit (ASIC) or microprocessor.

Read-only Memory (ROM) is non-volatile data stor-
age, used in microprogramming, data is ”"wired onto” the
chip, any error makes it unusable. To fix this, use electri-
cally writeable Programmable ROM (PROM), but can
only be written once. To fix, use read-mostly Erasable
PROM (EPROM) blocks of which can be erased and
rewritten using UV light. Electrically Erasable PROM
(EEPROM) allows individual byte rewrite, but is very
expensive and much slower write operations, less dense.

Flash memory supports high-speed block (not byte) re-
programming, 1 transistor/bit ~ EPROM > EEPROM.

Virtual Memory Hierarchy, Performance

1.

Can split main mem into physical and logical (virtual).
If lookup item not found (page fault), "rename” its vir-
tual address in page table instead of physically moving
it, then reference it by the new name in physical memory.

Multiple page lookup: virtual mem is proportional to
amount used, but > 1 lookup per request needed.

Design Principles for mem hierarchy: Temporal/spatial
locality, inclusion (all info stored at level M,, most re-
mote from processor, eventually copied onto M, _1) and
horizontal /vertical copied data coherence/consistency.

Memory hierarchy is characterised by the cost per bit:
C; > Cjy1, access time ty; < tp;41, capacity S; < Si1
at level i. Levels/layers: CPU <> My <3 My <> -+ <> My

Memory Hierarchy Performance depends on: Address
reference patterns (order, frequency), per-level access
time/cost C; and capacity S;, block transfer size and al-
location policy (which blocks to replace).

Performance measure average cost per bit for combined
memory Cg = % Try to make cost C's approach
Cs given C7 > (9, hence capacity S1 < Ss. The bigger

Sy — 51 the more can reduce relative combined costs.

Hit ratio H = ﬁ, where N7 is the # times the word is,
Ny - isn’t in provided addr, is program dependent! Miss
rate is 1 — H.

10.

Virtual Memory

1.

Average Access time tay, = Ht1 + (1 — H)(t1 +t2). Block
transfer: If item not at provided layer address, swap in as
part of the mem block, access from the same level again.
Uses slow I/O, so ta > t1, ta ~ tp (block transfer time).

Access time ratio between two layers r = t5/t1, access
efficiency e % = m shows factor by which
avg access time differs from minimum possible. For e to
approach 1, H must also approach 1.

Memory space utilisation v = 2% where S, is utilised,

S is all memory. Can detect wasted space with S — .Sy,
potentially signifying empty regions: mem blocks have
different lengths, leaving "holes” (fragmentation), inac-
tive regions: data transferred to a new block back and
forth without being accessed. System regions occupied
by mem management software.

‘ paging vs segmentation

Virtual Memory makes programs independent from ca-
pacity memory system, efficient memory sharing, no need
for manual mem allocation. Uses mem hierarchy, simpli-
fies loading of programs for execution (relocation).

To use memory efficiently in multiprogramming can use:
Swapping: partitioning to make better use of space, and
using logical vs physical address; and Paging vs Frames.

Address Translation: CPU virtual address space is
much greater than memory physical memory space, so
when info isn’t in main mem, need to swap it from sec-
ondary mem, a process can only execute in main memory.

Temporal Locality: items (data/instructions) once ref-
erenced are likely to be referenced again in near future
(iterative loops, access to vars).

Spatial Locality: program often references items whose
addresses are close to each other in address space (array
elements).

Sequential Locality: most instructions in program are
executed sequentially, with branching-out account for <
30% of instructs.

Page Table: data structure con-
taining the translation between
logical and physical addresses.
Presence Bit = 0 signifies page
fault. When virtual address space
> mem space, most entries will be

empty, too many entries.
Every virtual mem reference causes 2 physical memory

accesses: fetch page table entry, fetch data.

6.

10.

11

Demand Paging: each page of a process is brought in
only when it’s needed. When program references page not
in memory, it triggers page fault which tells the OS to
bring in that page.

Hierarchical page Table uses nested page tables, so
page memory usage is proportional to amount of memory
used by process, however need > 1 page table lookup.

Inverted Page Table: same as separate chaining

hashmap: hash the page number, probe by indexing
into page table - if encounter terminator symbol then
the address isn’t there, page fault, else concatenate the
page frame addr with the offset(word number) to give
real memory address. Weighted avg # of probes is 1.5,
so desirable to have 2n entries for n pages in main memory.

Virtual address
nbit

Control
bt

Process
Page# ID Chain
‘:

»o1 [ame O]
o

Real address

Segmentation divides memory into segments, or
variable-length regions that represent logical groupings of
instructions or data (e.g., code, stack, heap). Segments
are named and can be defined by the programmer or op-
erating system. Each segment has its own base, limit, and
associated access rights.

Advantages offered by segmentation, not paging: simpli-
fies growing data structures, as can be assigned to its own
segment that can expand or shrink. Allows programs to be
altered and recompiled independently without relinking or
reloading. Lends itself to being shared among processes
and to protection through assignment of access privileges.

Page Segment

One

Invisible to application
programmer

Trivial (all blocks are the
same size)

‘Words per address

Programmer visible?

Two (segment and offset)

May be visible to application
programmer

Replacing a block Difficult (must find contiguous,
variable-size, unused portion of

main memory)

Memory use inefficiency Internal fragmentation

(unused portion of page)

External fragmentation (unused
pieces of main memory)

Efficient disk traffic Yes (adjust page size to Not always (small segments may
balance access time and transfer just a few bytes)
transfer time)

.Segmented Page Mapping divides memory into

variable-sized segments, each split into fixed-size pages.
Reduces memory overhead of flat paging but may cause
external fragmentation, where small unusable memory
gaps remain. Mapping requires segment and page tables.

Each virtual memory reference causes 3 physical mem-
ory accesses: fetch segment table entry, fetch page table
entry, fetch data (very slow).

Program

Segmentation Paging Main memory

mechanism mechanism

12. Memory Management Unit (MMU) is hardware

translating a virtual address into physical address. Each
memory reference is passed through it.

13. Translation Lookaside Buffer (TLB): cache for MMU

with the most used page table entries. Offers high per-
formance gain, usually 32-128 entries, 4 to 8-way set-
associative. Switching processes is expensive because TLB
has to bee flushed, but can include process id to avoid it.

Virtual Address

Translation
Table

Physical

Address Memory

14. TLB performance: when page address not found in

TLB (TLB miss), significant overhead occurs in searching
main memory page tables, even when it’s in main memory.

15. Avg. address translation time t; = ty,+ (1 — Hep)t

where typ is TLB translation time (whether hit or miss),
tmt is table lookup time on T'LB miss, Hyyp is TLB hit
ratio. TLB miss ratio (1 — Hyy,) is usually < 0.01.

16. Page size S, impacts memory space-utilisation factor w.

Large S, — internal fragmentation, Small S, — page ta-
bles become large, which reduces space utilisation.

17. Let Sg be average segment size in words. If S, > S, then

on average, the last page assigned to a segment will con-
tain S, + 2 words, while the size of page table associated
with each segment is Ss + S, words (assuming each entry
is single word).

S, S
Segment memory space overhead S = Ep + st
S, 25,8,

Utilisati = =
Space Utilisation u 515 Sg 128,011 5)

18. Optimal page size SIE)PT is defined as value of S}, that

maximises v or minimises S. Can differentiate:

ds 1 SS OPT OPT 1
e = 2 s d e —
is, ~2 sz % = V2ssandu 1+V2=5,

since S is minimum when dS =+ dS, = 0.

19.

20.

21.

22.

Given virtual address referenced A; and next address gen-
erated A; 4 with distance d between the two assume effi-
cient page replacement, then probability of A;,4 being in
memory level M is high if either:

1. d € S), 50 A;, Aj; 4 are in the same page P, probability
of these addr both being in P increases with page size.
2. d > S, but A; 4 associated with set of frequently refer-
enced words, therefore likely to be in page P’ # P, which
is also in M;. This likelihood increases with num of pages
stored in M7, so decreases with size of .S,.

Hit ratio H increases with small S}, but decreases past a
certain value. Prefer S, maximising i and decreasing t 4.
In large systems, values S}, yielding maximum H can be
greater than SpOPT.

Page Replacement Algorithms: upon page fault mem
management software swaps in the page from secondary
storage, if main memory full, swap out a page beforehand.
¢ Random: pseudorandom generator provides number of
page to be replaced, no consideration of principle of local-
ity, so poor performance.

e FIFO: replace page that’s been in main memory for
longest. No additional hardware required, but no consid-
eration of page usage, so can remove and reload too often.
e Clock: avoids frequent transfers. FI-Not-Used-FO has
"use” bit set to 1 when page is referenced. At page fault,
if the earliest page ”use” is 1, reset to 0 (give it a sec-
ond chance to stay in the main memory) and advance the
pointer. Repeat until encounter "use”= 0, and replace.

e LRU: swap out the page not referenced for longest, or
one with largest ”age counter” that’s cleared when page is
accessed, incremented at fixed intervals. Difficult for large
number of pages, tend to use approximation.

e LRU approximation: ”use” bits instead of counters,
set to 1 on each memory access. At fast intervals, OS ex-
amines all these reference bits and resets to 0 when read.
Evict a page with "use” = 0. Record of num of times
7use” bits were set to 1 gives approx usage close to LRU.
e Working set w(t,T') at time ¢ is collection of pages ref-
erenced during time interval (¢-7',t), ensuring each process
keeps its working set in memory. Evict a page not used
within the last T time units (process time, not absolute
time), but hard to find one outside of working set. Small
T — evict too soon, more page faults, large T' — too many
pages stay in memory, reduced efficiency.

Thrashing: too many processes in too little memory, OS
keeps swapping (excessive page faults), so constant disk
usage, preventing meaningful progress. Solve with good
page replacement algorithms, reducing number of running
processes or installing more memory.

Cache Memory

1.

Locality of Reference: CPU can only process memory
within its registers with fast access time, but low capacity.
Main memory, or RAM on the other hand is slower, but
has much more capacity, so CPU ”stages” copy of that
data in cache that’s somewhere in-between the two.

Block: min transfer unit between cache & main memory.
Line: cache memory portion capable of holding one block
and a tag. Tag is portion of cache line used for addressing.

Main memory divided in fixed-length blocks of K words
each. Cache comprises m lines of K words and a tag.
Each line also includes control bits that indicate if line
contains valid data (valid bit) or has been modified since
being loaded (dirty bit) and other status information.

Cache read: receive read address (RA) from CPU, if
cache line tag matches (Cache Hit), return copy of data
from cache, else (Cache Miss) read block of data from
main memory, replace victim block in cache with it, return
copy of data.

Virtual/logical Cache stores data using virtual ad-
dresses before going through MMU, so CPU can access
it faster than physical address; translation only happens
on cache misses.

Logical address Physical address

» MMU

Main
memory

r Data

A
Y

Physical cache uses main memory physical address, but
is placed after the MMU, so have to translate at each call
- slower, but avoids aliasing issues (same physical address
might have multiple virtual addresses):

Logical address » MMU Physical address
Processor Y Main
Cache | memory
A
| Data Y -
< >

Hit Ratio j = Z times words are In cache "\ 35 Ratio 1 — h

total # memory references *

For cache access time ¢, and main memory access
time ¢,,, the average access time ¢, is:
i t
o= tet (1= B)tm = = =141 - 1)
c (&
Want t, =+ t. to approach 1. In cache, t,, - t. is low, so h

of around 0.7 — 0.9 is fine.

9.

10.

11.

12.

13.

14.

15.

Block Placement: number of cache lines m is smaller
than # of main memory blocks, so need to map each block
j onto a line. Can do so using following mappings:

e Direct Mapping: each block mapped into one possible
cache line. Mapping: 7 = j modm for line number .

e Set Associative: a block can be placed in a restricted
number of places comprising sets, number of which i = j
mod v and m = v X k where k is num of lines in each set.
e Fully Associative: permit each block to be loaded into
any line. Cache control Logic (CCL) interprets mem
address as Tag-Word field. To see if block in cache, CCL

simultaneously examines every line’s tag for match.

Cache set number i, main memory block number j, num-
ber of lines in the cache m, number of sets v and number
of lines in each set k.

Cache Memory Address: divided into a block address
(tag + index or set bits) and a block offset (word). The
offset selects the word within the block; the index selects
the cache line (direct mapping) or the set (set-associative);
and the tag is compared against stored tags to detect a hit.
(Offsets are not used for comparison, since they always
match by definition.)

Direct-Mapped Block Identification: use the index
to select one cache line; compare the stored tag with the
address tag; then check the valid bit. Simple, low-cost,
but has conflict misses as each block has fixed location.

16.

17.

18.

Block Address
CPU Main

Memory

[Tag | Index | Offset |

. L1 Data (or
V Tags _DataBlock RF Cache L2 cache)
S gm 0 Evicted data
] ; \D L L f Set from L1
- | Lt |Set2 Tt
L i1 i1 | Set3

FA Cach
Hit data from VC :b%:fk: Evicted data
(miss in L1) From VC

Victim Cache: a small (4-16 lines), fully-associative
buffer placed between the direct-mapped L1 cache and
the next level. It holds evicted L1 lines to reduce conflict
misses, so the store mutually exclusive data.

Set-Associative Block Identification: compute set in-
dex i = j mod v; compare the tag against all k lines in that
set and check each valid bit; on a miss, invoke a replace-
ment policy (e.g. LRU) to choose which line to evict. Bal-
ances hardware complexity and conflict-miss reduction.

Fully-Associative Block Identification: treat the en-
tire cache as a single set (no index field); compare the tag
against all m lines in parallel and check valid bits; on a
miss, use a replacement policy to evict any line. Not de-
termined by size of line field in CPU address, so can be
any size. High flexibility but requires complex hardware.

Content addressable memory (CAM) is made out of 22.

SRAM cells, but more expensive and holds much less data.

19.

20.

21.

CAM searches for the provided tag, returning the address
where the match is found (and for some architectures the
associated data word) in a single clock cycle (extremely

fast). Commonly used in TLB and victim caches.

S, SLoSLy, SLySL, SL

2 ML,

ML sense
amps
(MLSAs)

Way-prediction cache guesses which “way” in a set-
associative cache holds the data. If the guess is right, you
get a hit in a single cycle with lower power; if it’s wrong,
fall back to the full associative check at a small extra cost.
Higher set associativity usually has higher hit ratio.

Cache replacement Policies are needed for (set) asso-
ciative mapping block replacement. Must be implemented
in hardware. Most effective usage-based algorithm is LRU,
others include: random, FIFO. Direct mapping only has
one line per block, so no choice is possible.

LRU: the "age” counter associated with each line incre-
mented at regular intervals and reset when line is refer-
enced. Can modify to consider that counters have fixed
number of bits and only the relative age is required. On
hit, reset hit line to 0 and increment all counters with a
smaller count. On miss when the cache is full, replace
the line with max. count, reset it to 0 and increment all
other counters. Largest count is the least recently used
line. Need [logy n]-bit counter for n-way associativity.

Cache Write Policies must maintain consistency with
main memory. Write-through updates both the cache
and lower-level memory on every write, ensuring co-
herency but generating high memory traffic. Write-back
writes only to the cache and sets a dirty bit; on eviction,
dirty blocks are written back to main memory, reducing
overall writes but leaving memory stale in between. This
requires 1/O operations to be routed through the cache
controller, adding hardware complexity.

Write miss at cache level: write allocate, the block
containing the word to be written is fetched from main
memory (or next level cache) into the cache and processor
proceeds with the write cycle (write through). No write
allocate: that block is modified in main memory and not
loaded into cache (write back). But can be used in both.

Cache coherency in multilevel cache ensures the data is
consistent between different levels so that CPU sees the
latest updates.

Ensure cache consistency with the following.
e Bus watching with write through: when data is

23.

changed, each cache ”listens in” on the system bus, and
either update their data or invalidate it: simple, but needs
everyone on the same bus and using write through.

e Hardware transparency: additional hardware en-
sures all updates to main memory via cache are reflected
in all caches (inclusive policy).

e Nonchacheable memory: shared main memory por-
tion that’s never cached; all accesses result in cache misses.

Split cache (L1) can improve performance: Instruction
Cache is reach only (by CPU), so no need to write back to
main memory when block overwritten. Data cache: less
predictable access, larger size, read/write happens often.
Usually used for L1 cache - others use unified cache.

Cache Optimisation

1.

HitTime;+MissRatey 1 x (Hit Timeyo+MissRater o x MissPenalty ng

7.

Avg mem access time = hit_time+(miss_rate X miss_penalty)

e Reduce miss rate: larger block and cache sizes, higher
associativity. e Reduce miss penalty: multilevel caches
and give reads priority over writes.
avoid address translation when indexing the cache.

Cache misses: compulsory, capacity, conflict and co-
herency (in multiprocessors). Hit/miss rates don’t reflect
true performance as they don’t factor cost of cache miss.

Larger block sizes (-MissRate,+MissPenalty): spatial
locality might reduce miss rate, but increases miss penalty
and the number of capacity and conflict misses.

Larger caches (-MissRate,+HitTime) can cause longer
hit times and incrased power consumption.

Higher associativity (-MissRate,+HitTime) reduces the
number of conflict misses, but can cause longer hit times
and increased power consumption.

Multilevel caches (-MissPenalty) reduces miss penalty,
L1 keeps pace with clock cycle times, while L2 and higher
serve to reduce number of main memory accesses. Now
the average multilevel access time with L1, L2 is:

Prioritising read misses over writes (-MissPenalty):
a small write buffer holds pending stores so a read miss
can bypass earlier writes, avoiding read-after-write haz-
ards and, when no address conflict and the bus is free,
reducing miss penalty with little hardware cost.

Avoiding address translation during cache index-
ing (-HitTime) uses page offset p (like virtual memory) to
index cache. Virtually indexed, Physically Tagged
(VIPT) caches stores at most p bits. Increase associativ-
ity to make cache larger with same page size, size of index

. oindex __ cache size
follows: 2 ~ block sizexset assoc. "

1. Best/worst case scenario:

Code Optimisation and Refactoring

100% system utilisation/one
subsystem has bottleneck. Performance can be memory
or compute bound.

2. Peak FLOPs: max achievable FLOPs for given machine,

Program efficiency: FLOPs,chieved + FLOPSsear x 100.
FLOPspear = clockSpeed - cores - flop/cycle.

3. Cache line is sequential data chunk loaded into cache.

Cache miss can be compulsory: data never loaded into
cache before, capacity: data was evicted due to capacity,
conflict: expected location already occupied.

4. Optimisation speedup: unoptimised time/optim time.

Have algorithmic optim, code refactoring (make com-
piler apply efficient single-core optimisations) and paral-
lelisation. Compiler optim is controlled by flags.

e Reduce hit time: g Pipelining is technique exploiting parallelism to execute

concurrently and increase throughput, but need to write
code that supports async execution as dependencies may
slow the system down by preventing concurrency. Fetch
and execute: instruct — fetch — instruct — execute.

6. Read after Write (RAW) hazard:

int a=5; int b=a*2 // pipeline may try to fetch 'a'
before assigning a value to it

7. Loop dependency: later loop iterations depend on ear-

lier ones’ result, so can’t parallelise the execution.

for (i=1;i<N;i++) arr[iJ=arr[i-1]+1; // dependent

Dependency detection: for each variable z in a loop: if
is read and never written: no dependency. If there be any
access to x in other iterations than the current - there’s a
dependency.

Loop peeling: some dependency-inducing task extracted
from loop, e.g. arr[0]=0, now can parallelise.

arr[0] = special_case(); // Handle separately
for (i=1;i<N;i++) arr[i]=arr[i-1]+1; // now indep.

9. Pointer Aliasing: multiple pointers point to the same or

overlapping memory location. Use restrict if not aliased
to ensure unique memory location pointer.

void foo(int xa, int *b) {xa += *b;}
// If a and b alias-can't parallelise, use restrict
void foo(int *restrict a, int *restrict b) {*at=*b;}

10.

11.

12.

13.

14.

15.

Loop interchange: modify order of memory access by

switching order of loops (traversing table cols before rows).

C 2D-Matrix Layout - A[row][column] (Row Major) Sequential Memory

|o[1]2]3 [of[1]2]3]4]5]6]7[8]9]10[11]
Rows 45|67
|8]9 [10[11 Data Index = column + (row * no. of columns)
Columns

Non-sequential access uses stride of row length, if it fits
into cache, little performance impact, if not - significant.

for (row = @; row < N; row++) // can switch
for (col = @; col <M; col++) // these two
process_block(row, col);

Loop Blocking: restructure loops to process data in
small blocks of size B instead of sequentially, improving
cache locality and reducing memory access latency.

for (i =0@; i <N; i +=B) // note the block size B
for (j =0; j<M; j+=B) // like a moving kernel
process_block(i, j); // insted of a cell

Loop fusion: merge multiple same-range loops into one
s.t. no dependencies are broken. Useful when high over-
head of loop conditional checks, poor temporal locality /-
expensive intermediate inter-loop result storage.

for (i =0; i <N; i++) { processA(i); processB(i); }

Loop fission: improve locality by splitting loops compris-
ing many unrelated operations (opposite of fusion). Useful
if poor temporal locality of memory accesses between loop
iterations or registers spilling into cache.

for (i =@; i <N; i++) processA(i); // handle
for (i =@; i <N; i++) processB(i); // separately

Loop unrolling: expand loop body to do multiple it-
erations. Mustn’t break inter-loop dependencies. Useful
when high overhead of loop conditional checks or multiple
arrays storing intermediate values between loop iterations.

for (i =0@; i <N; i +=4) // unroll factor = 4
process(arr[i]); process(arr[i+1]);
process(arr[i+2]); process(arr[i+3]);

In C can use #pragma unroll(n)

Loop Pipelining: reorder independent operations across
iters within a loop to enable instruct pipelining. Prolog
and epilog represent portions of pipeline leading up to
the full overlap. The middle can be pipelined.

for (i =0; i <N; i++)
a=load(i); b=compute(a); // load then compute
store(i, b); // store last to optimise

Vectorisation

1.

10.

11.

SISD: classic serial application, applies one instruction to
one data stream at a time. SIMD: one instruction can be
applied to multipe data streams at the same time. MISD
is rarely encountered, and MIMD: different instructions
can be applied across different data sets in parallel.

Vector instructions utilise SIMD to apply a single in-
struction across all data elements simultaneously. Vector
registers contain multiple data elements at a time.

1 2 3]4+[4 5 6]=[> 7 9

Useful in image overlaying (chroma keying)

Auto-vectorisation: compiler implemented, less control
but easy: #pragma ivdep / simd / vector always

Vectorisation Intrinsics: map to underlying assembly
instructions, more control but difficult, can cover cases
that compiler can’t.

In-line assembly instructions written directly in code,
offer most control but difficult to implement, and less
portable (depends on system).

parallelised operations register width + datatype
size. Streaming SIMD Extensions (SSE) has register
width of 16 bytes, so can hold 4 data elements of size 4
bytes, or 2 of size 8 bytes. Advanced Vector Exten-
sions (AVX) are twice the register width of SSE. Altivec
is old and GPUs are basically large SIMD units.

Memory Alignment: memory block aligned to a value
m if byte offset is divisible by m - typically a power of 2
(alignment boundary), e.g. 16/32/64 bytes, depending
on processor. Aligned 12]45|67; Unaligned 1|234|56|7

To use aligned loads and stores, memory alignment must
be at least the size of vector register, for optimal perfor-
mance - at least the size of cache line.

<immintrin.h> header provides access to SSE intrinsics.
_-m128 is 128bit single precision (float) unit vector, __m128d
is double. Can allocate memory with requested alignment
with _mm_malloc(vector, alignment, and free it with
_mm_free. Add/multiply with _mm_add_ps or _mm_mul_ps.

SSE can’t selectively run different operations in parallel,
so avoid branching - precompute results and select correct
value from each vector of results using a mask, but slow
(two branches means twice as much computation), so best
to eliminate them.

SSE Shuffle: rearrange elements within SSE vector regis-
ter or duplicate its parts: _-mm_shuffle_ps(vec_a,vec_b,i),
for control value 7, or macro MM_SHUFFLE(2,1,0) where
leftmost entry is the highest index of loaded array.

Threading

1.

2.

Compiler can’t auto-thread code, need to implement it.

Thread is a single flow of control within a process.
Threaded program can run code blocks in parallel asyn-
chronously (MIMD). Usually have one thread per core,
each with private memory accessible only by itself and
global memory shared by all threads.

Race condition is when final result is dependent on order
of execution. Parallel algorithm must end with determin-
istic result despite nondeterministic thread ordering.

OpenMP, or Open Specifications for MultiProcessing,

is an API used to explicitly direct multithreaded shared {17

memory parallelism. Explicit parallelism: programmer
has full control over parallelisation.

OpenMP doesn’t specify parallel I/0, it’s up to the pro-
grammer. Threads can "cache” their data and not re-
quired to be consistent with real memory all the time.

#include <omp.h>

// #pragma omp parallel [clause list]

#pragma omp parallel if (is_parallel == 1)
num_threads(8) shared (var_b) private (var_a)
firstprivate (var_c) default (none) {

// parallel section executed by all threads
// all threads join master thread and disband

}

Clause list may include: conditional parallelisation "if
(bool expr)", degree of concurrency num_threads(n)
and data scoping: private, firstprivate, shared tak-
ing variable list as parameters, and default taking one of
the above (shared or none).

Number of threads is determined in following order:
1. Evaluation of the ”if” clause.

2. Setting of the num_threads() clause.

3. Use of omp_set_num_threads() function.

4. Setting of OMP_NUM_THREAD environment table.

5. Implementation default: typically # of cores on a node. 13

Threads are numbered from 0 (master thread) to N — 1.

omp_(set/get) _num_threads(n) sets/gets the maximum # 14.

threads. omp_get_thread_num() gets current thread id.

Flow control: parallel, barrier, critical, atomic
deals with parallel execution, blocking and synchronisa-
tion of threads, thread creation and preventing violation
of dependencies and race conditions.

False Sharing: Occurs when threads update nearby vari-
ables in the same cache line, causing slowdowns. Avoid by
aligning data or using thread-local variables.

10.

12.

e #tpragma omp parallel {...} signifies start of parallel
threaded region, bounded by ”{}”.

e #pragma omp barrier prevents any one thread from con-
tinuing until all threads have reached the barrier and syn-
chronised. Helps prevent violation of dependencies, but is
expensive, doesn’t scale well.

e #pragma omp critical {...} serialises a portion of a
parallel region: only one thread executing at a time, oth-
ers are blocked. Prevents race conditions, but is slow.

e #fpragma omp atomic allows immediately following up-
date to execute atomically, preventing race conditions
from multiple writing threads, faster than critical. Only
works with +, %, —, /, &, ", |, <,>, not nested functions.

Variable scope private, shared, default, reduction,
firstprivate: each thread has their own private scope
and access to shared memory. Variables declared in paral-
lel region are private to a thread, those outside must have
a scope type declared if used inside the region.

e #pragma omp private(vari,..): separate variable inst-
nace per thread, doesn’t retain original value, useful when
original value doesn’t matter, e.g. loop indices.

e #pragma omp firstprivate(vari,..): like private, but
copies original value. Use when original value matters, e.g.
constant calculated outside the loop.

e #pragma omp shared(vari,..): uses shared global mem-
ory, accessible by all threads. Used when multiple threads
need to access same data, but may cause race condition.

e #pragma omp default(shared|none): sets the default
variable scope for all unspecified outer variables used
within the parallel region. shared (OpenMP default)
makes them shared, while none forces you to declare every
variable’s scope, otherwise raising compile error.

e #pragma omp reduction(op:var): performs a reduction
on var with operator op (e.g. +, *, max). OpenMP creates
a private copy per thread, applies op locally, then com-
bines all partial results into the shared var at the end,
avoiding race conditions without explicit locks.

Workload Decomposition: for, schedule distributes
(ideally evenly) work between all threads.

e #pragma omp parallel for shares iterations of a loop
across threads.

e #pragma omp parallel schedule(type, chunksize) bal-
ances overhead and data distribution. type can be:

>> static, dividing loop iterations into blocks of chunksize
iterations and assigning to threads in round-robin fashion.
>> dynamic, assigning such new blocks to a thread each
time it completes a block.

>> guided: like dynamic, subsequent chunks decrease size.
Default chunk size is 1.

Processor Organisation

1.

10.

In each instruction (fetch-decode-execute) cycle, the
CPU fetches instruct from memory using PC (which is
then incremented to point to next instruct). Then loads
instruct into IR, decodes it to determine operation and
operands; executes the instruct updating CPU state. Cy-
cle repeats continuously, often in > 1 CPU clock cycle.

CPU components include:

Arithmetic Logic Unit (ALU) math/logic operations,
Internal Processor Bus between registers and ALU.
Control Unit (CU) decodes program instructions and
handles logistics for their execution, Registers storage.

User-visible registers used by low level programmers to
minimise references to main memory. Includes data, ad-
dress, index, segment pointer and condition code registers.

Control and status registers: used by CU to maintain
processor operation and privileged OS programs to control
program execution. Includes PC, IR, MAR, MBR.

Instruction Set (IS) is a collection of instructions that
processor can execute. Has binary opcode specifying
the operation (e.g., ADD R1, R2). source and result
operand specifying inputs to the operation and where its
result goes. Finally, next instruction reference: where
to fetch next instruction.

Opcode mnemonics: ADD, SUB, MUL, DIV, LOAD, STOR.

Instruction types include:

data processing: arithmetic/logic ops (e.g. ADD, SUB),
data storage: move data to/from regisers/mem (LD, ST)
data movement: I/O transfer (e.g. IN, OUT)

control: test/branch instructions (e.g. BEQZ, IJR).

Instruction Addressing Modes:

Mode ADD R4, R3, <..> | R4 = R3 + <..>
Register (reg) | R2 R2

Immediate #5 5

Displacement | 100(R1) Mem[100 + R1]

Reg Indirect (RT) Mem|[R1]

Absolute (0x475) Mem[0x475]

Mem Indirect | @(R1) Mem[Mem|[R1]]
PC-relative 100 (PC) Mem([100 + PC]
Scaled 100(R1) [R5] Mem[100+R1+R5x4]

Datatypes: Binary Integer (8/16/32/64)-bit, Floating
Point (32/40/64/80)-bit, Address(16/24/32/48/64)-bit.
Can also have vector data.

IS Architecture (ISA) encoding: fixed length:
to decode (RISC, ARM), variable length: saves space
(CISC, x86) and very long instruction word (VLIW):
multiple instructions in one fixed-length bundle (HP/ST).

11.

12.

13.

14.

Indirect Cycle introduces interrupts and indirections
to account for indirect memory addressing potentially re-
quiring additional memory accesses.

User @ IWRITEI. x @lmeEl. * @ |WRITE

Program |

(b) Interrupts,
short I/O wait

1/0 @ 1/0

Program Command

Interrupt
Handler LR

Interrupt classes include program: for errors in execution
(e.g. segfault), timer: for periodic OS tasks, I/O: for I/O
events or requests, or hardware failure: for crashes due
to power or memory parity error.

Control Unit sequences micro p-operations for pro-
cessor and generates control signals that execute them.
Control signals open and close logic gates, resulting in data
transfer to/from registers and operation of ALU.

Instruction register

l

Control signals
Control

from control bus
Unit <:
Control signals ’;

to control bus

Control signals
within CPU

Flags

Control bus

Clock——

e Input: clock: for timing, IR: for opcode and addressing
mode of current instruct (determining micro-operations to
perform during execute cycle); flags: to determine status
of processor and outcome of previous ALU operations; and
control signals from control bus.

e Output: Control signals 1) within processor: to either
move data between registers or activate specific ALU func-
tions; and control signals 2) to control bus: to memory
or to I/O modules.

Hardwired CU (RISC): implemented using digital logic
circuits that directly transform input signals into output
control signals. It uses a sequencer, driven by the clock,
to step through control states for each instruction.

Pros: Fast

Cons: complex hardware: difficult to design and test. In-
flexible: hard to add new instructs, long design time.

Microprogrammed CU (CISC): Uses a microprogram
stored in memory to generate control signals for each in-
struction. Each instruction is broken down into a sequence
of micro-operations executed via routines.

Pros: Easy reusable hardware design, supports complex
instructions. Flexible: easy to add new instructs by re-
programming microprogram memory.

Cons: Slower than hardwired CU due to memory lookup.

Performance Pipelining

1. Pipelining exploits parallelism by having many opera-

tions execute concurrently, increasing data throughput.

Clock

Logic for
Stage 1

Logic for
Stage 2

Logic for
Stage 3

(~~
Latch

>
‘" Latch

Latch

Intermediate results

2. Different pipe stages/segments complete different parts

different instructions in parallel.

Throughput: how often an instruct exits the pipeline.
Processor cycle: time between moving an instruct one
step down the pipeline.

Proc. cycle length = slowest pipe stage (1 clock cycle).
Balance length of each pipeline stage, in ideal conditions:

time per instruct on unpipelined machine

Time per instruct = -
number of pipe stages

5-stage pipeline: IF = ID = EX = MEM =- WB: instruct
fetch, decode, execution, memory access and write-back.

o IF: send PC to memory, fetching current instruct.
PC+=4, since each instruct is 4 bytes

e ID: Decode the instruction and read the source regis-
ters specified in it (in parallel if RISC). Also computes
possible branch target address (for branch instructs).

eEX: ALU performs the actual computation using
operands prepared in previous stage, e.g. arithmetic
or logical operations, effective address calculation, or
condition evaluation. The stage may also involve a bit
shifter, or a multi-cycle multiplier or divider.

e MEM: memory read from temporary buffer (load) or write
data from the register to memory (store) using the ef-
fective address from EX.

e WB: write result to register file (from ALU or memory).

4. Performance Issues: pipelining increases throughput,

but not speed of a single instruction.

e Stage imbalance: slowest stage limits the clock speed.
e Pipelining overhead: delay from pipeline registers
and maximum delay between stages (clock skew).

e Pipeline latency: instruction duration limits how deep
the pipeline can go. Pipeline depth = # stages

Goal: keep pipeline correct, moving, full.

Cycle time: advance set of instructs one stage in pipeline:
T=max [+d="7y,+d
1<i<k
for time delay on circuitry in i stage 7;, max stage delay
Tm, 7 stages k and time delay d of latch advancing signals
and data between stages.

10.

11.

12.

10

Total time for k-stage pipeline to execute n instructs:
Typm=k+ (n—-1)7

The first instruction takes k cycles, and each of the re-

maining n — 1 instructions completes in 1 cycle.

Pipelining Speedup factor:

g T1, no pipelining nkTt
ka,n ~ pipelining [k+ (n—1)r
Pipeline Hazards occur when pipeline or its portion
must stall as conditions don’t permit continued execution
(pipeline bubble). Conflicts: resource, control, data.

Resource Conflicts (structural hazard): > 2 in-
structs in pipeline need same resource, so serialise (slow).

e Schedule: Eliminate contention: separate instruct and data
caches, instruct buffers, or multi-ported memory.

e Stall: Detect contention, stall one of the stages, inserting a
pipeline bubble (a delay carrying no useful work).

e Duplicate: Add more hardware s.t. each instruct can access
independent resources in parallel.

Control Conflicts (procedural dependency): Occur
when the pipeline cannot determine the next instruction
due to a branch or jump.

e Multiple Streams: Fetch both paths by duplicating pipeline

front-end. Costly due to register/memory contention and risk
of fetching incorrect path.

e Prefetch Branch Target: Prefetch both the branch tar-
get and next sequential instruction. If the branch is taken, the
target is ready; otherwise, discard.

e Loop Buffer: Small, high-speed memory storing recently
fetched sequential instructions. Helps avoid memory access de-
lay and is effective for loops.

e Branch Prediction: Guess if a branch will be taken. Static
methods ignore history, prediction taken always/never/by op-
code. Dynamic use execution history for accuracy, use tak-

en/not taken switch or branch history table.

Data Hazards (data dependency): conflict in access
of operand location. R3=..; R4=R3+1, so have to stall R4,
otherwise it will get wrong old value of R3. Solve using:

Schedule: programmer avoids hazardous instruction or-
der (manual). Stall: hardware freezes earlier stages until
the hazard clears. Bypass: forward results directly to de-
pendent stages before previous instruction finishes. Spec-
ulate: assume no hazard; if wrong, discard and restart.

Instruct ¢ occurs before 7, both share register x; have:

Read After Write (RAW): j reads x before ¢ writes z.
Write After Read (WAR): ¢ reads x, then j writes x.
Write After Write (WAW): ¢ writes x, then j writes x.

These don’t occur in 5-stage pipeline, unless it allows to
write in more than one pipe stage or proceed when a pre-
vious one is stalled. RAW is true data dependency.

13. 73 ¢ r1r1 <14 (WAR)

Speedupoverall =

r3 < 1r1; 75 < 73 (RAW) WAR, WAW (output dep.) 3.

are dependencies on a regis-
ter name, not a value.

r3<—T17T3< Tg (WAW)

14. Speedup comprises fraction enhanced < 1 that can

achieve speedup enhanced > 1. Ahmdal’s law:
timeglq _ 1 4.

timenew (1 — fractionenhanced) + m%

15. Pipeline enhancements: 2
1) Data forwarding (bypassing): forward result value
from memory or writeback stage to dependent instruction
as soon as the value is available.

2) Separate L1 cache into I and D caches, removing con-
flict between IF and EX stages.

3) Dedicated execution units have different delays, allow-
ing for more flexible pipelining. 7

4) Reservation station: buffer holding operations and
operands for EX unit until operands are available.

Complete

File

]

(T Lol
Reservation
station

Issue

CTU

X LSU
Dispatch

ALU = arithmetic/logic unit
CTU = control/transfer unit
LSU = load/store unit

| MUL = multiply unit

ID = instruction decode

IF = instruction fetch

OF = operand fetch

WB = write back

y
D-cache

| I-cache

| L2 Cache |

Pipeline Design

1. Reservation table: resource (pipeline stage) rows and 9.

time unit (clock cycle) columns. Cross ”x” at row i, col-
umn j means station ¢ is busy at time j.

0 1 2 3 4 5 6 7 t
Stages: 1| ¥ x| x
2 .x.x. 4+ + + + |
3| ' | | x| | | | | 10.
al_| x| x|
- 4 -[5 -5 H 4‘_.. 11.

But (i), (ii) indicate that pipelines may not accept initia-

Latency: # clock cycles between two initiations.
Average Latency (AL): avg # clock periods between
initiations over repeating cycle.

Minimum AL (MAL) is smallest possible latency
among all possible sequences of initiations.

Collision is an attempt by > 2 initiations to use same
pipeline resource at same time.

Collision vector C4,..C,, where (; = 1 is forbidden la-
tency: initiating instruct ¢ time units after preceding in-
struct causes collision. C; = 0: permitted latency. Cy = 1

Initial collision vector is pipeline state after first ini-
tiation. Compute by shifting the reservation to the right
by 1 table, and check conflicts against itself. Can also
compute forbidden latencies (subtract stages within same
resource), and mark them 1. SEE LEC 09 SLIDE 15

Latency cycle: latency sequence repeating same subse-
quence indefinitely. Constant cycle has 1 latency value.
Scheduling strategy (state diagram):

1. Shift collision vector left by 1, inserting rightmost 0.
Each shift corresponds to increase in latency by 1.

2. Continue shifting p times until a 0 is shifted out from
the leftmost bit. Then p is a permissible latency.

3. Bitwise OR initial and each shifted register, producing
a state node, connect nodes with edges labelled p.

4. Repeat this from each initial and newly created state.

011010

111010 l

Simple cycles visit each state once (e.g. 1 ~» 6). A
greedy cycle chooses minimum possible latency edge at
each state, usually gives a good average latency, though
not necessarily the minimum achievable (MAL). For ex-
ample, 4 ~~ 4 is a greedy cycle starting from state 111010.

Max 7 x”’s in row < MAL < greedy cycle AL < # 1s in
initial collision vector + 1

Reduce latency by inserting delays D in the pipeline
to expand reservation table, reducing chance of collisions.
Typically, lower bound of delays < any fixed latency.

tions at start of every clock period, else collisions occur. Superscalar processors

(i) Stages operate for > 1 time period, ” x”’

columns of same row.
(ii) Feedback: > 1 ”x” in a row, non-adjacent columns.

s in adjacent 1.

11

Superscalar: fetch-decoding multiple instruct in parallel.
Can reduce state-ready CPI (clock pulses per instruction)
to less than 1. Applicable to RISC and CISC.

Speedup S =

2. Issue rate is # instructs issued per instruction cycle. For

superscalar, max issue rate is the width of issue window, or
degree of superscalar o. Stages following issue window
are not duplicate, so called non-uniform superscalar.

Register Complete
File

.

Reorder
buffer

Dispatch

ST [mor omor [mor |
e 8 T

Issue Reservation
Issue stations
window ALU = arithmetic/logic unit
CTU = controltransfer unit
LSU = load/store unit

MUL = multiply unit

ID = instruction decode

IF = instruction fetch

WE = write back

PD = Predecode

I L2 Cache |

Superscalar Performance model IF = DR = EX = WB
has fetch, decode, execute, write stages; each is duplicated.
Have s stages (pipeline length), N instructs per program
fragment, and degree of 0. Then number of clocks required
to execute program segment is:
Aligned s+ (Njo)—1
Non-aligned s+ (N/o)

4. Probability of alignment is 1/0, so weighted avg # clocks:

8.

10.

11.

N -1
o

s+

Avg clocks = 1 <s+N 1)+<11) <s+N)
o o o o

s+(N-1/o [1 1 1
S B R G

Superscalar CPI =
c N o

non-supersc. clocks s+ N —1 o(s+ N —1)

os+ N —1

superscalar clocks s+ (N —1)/c -

As N — oo, speedup — o, and as o — oo, then speedup
— 14 (N —1)/s, so superscalar speedup is limited by lo-
cal parallelism of the program. Speedup increases linearly
with o until instruction level parallelism (ILP) limits fur-
ther increase. ILP typically ranges 2 — 4, so impractical
to have o too large, instead save on chip area.

ILP refers to degree to which instructs can be parallelised.
Limited by true data, procedural, output and anti depen-
dencies, and resource conflicts.

Superpipelining divides pipeline into more smaller
stages to clock to higher frequency.

ILP vs Machine Parallelism: ILP overlaps indepen-
dent instructions, limited by data/procedural dependen-
cies. Machine parallelism is hardware’s ability to exploit
ILP, constrained by number of parallel pipelines. High
ILP is wasted if machine parallelism is low.

14.

15.

16.

12

. Register

Instruction issue is the process of initiating instruct ex-
ecution in processor’s functional units (move from decode
to first execute stage of pipeline). Instruction issue pol-
icy: rules applied or protocol used to issue instructions.

Reorder independent instruct sequences to schedule in
parallel, but requires processor lookahead to know order
in which instructs are fetched, executed, and committed.
Each requires 2 DR, 3 EX and 2 WB units running in parallel.

In-order Issue, In-order Completion: Instruction is-
sue stalls if EX has a conflict or takes multiple cycles. Pro-
cessor decodes instructions only up to the point of depen-
dency or conflict; otherwise, stalls.

In-order Issue, Out-of-order Completion: Any num-
ber of instructions may complete out-of-order, limited by
machine parallelism across EX units. Helps when instruc-
tions take multiple cycles. Stalled by resource conflicts,
true data dependencies (RAW), and procedural dependen-
cies. Introduces output dependencies (WAW).

. Out-of-order Issue, Out-of-order Completion: Post-

conflict instruct may be independent and execute earlier
for improved performance. Decouples DR and EX pipeline
stages: processor continues to fetch-decode into an in-
struction window. When EX unit is free, it selects a
ready instruct with no conflicts or prohibiting dependen-
cies. More instructs available for issuing, reducing chance
of pipeline stall, but introduces anti-dependency (WAR).

Renaming: avoids anti- and output-
dependencies (storage conflicts) by dynamically allocating
hardware registers. When an instruction executes, it’s as-
signed a new register, and subsequent source operands are
renamed to refer to the correct version, ensuring correct-

ness and avoiding false dependencies.

Instruct register reference r#, and hardware register hwi.
I1: ADD r1, r2, r3 = ADD hw5, hw2, hw3

I2: MUL r1, r4, r5 MUL hw6, hw4, hw5
Avoids RAW error.

=

Branching can hinder pipeline performance. Prefetching
has 2 pipeline stages between prefetch and execute: mi-
croprocessor prefetches next instruct after branch instruct,
and branch target. Produces two-cycle delay when branch
is taken, needs improvement.

Delayed Branch strategy: processor calculates branch
results before prefetching any unusable instructions. In-
struct following branch always executed, keeping pipeline
full while new instructs are fetched. But > 1 instructs
must execute in delay slot, hard because of inter-instruct
dependencies. So now very useful.

17. Branch Prediction, speculative execution like before

18. Superscalar Execution: static linear program trans-

formed by branch prediction into dynamic instruct stream,
which is dispatched to execution window. Each instruc-
tion is now structured by its data dependencies, and exe-
cuted according to hardware resource availability. Finally,
instructs are committed /retired, or put back in-order.

Speculative execution may cause instructions to be com-
pleted and later discarded if the branch is mispredicted.

instruction
dispatch

instruction
instruction fetch
and branch 1
prediction

instruction
reorder and
commit

instruction

static execution

program

window of
execution

Data Level Parallelism

1. Data Parallelism: same operation applied to different

data items in parallel (e.g. dot product), unlike thread
parallelism where diff. instructs execute on diff. threads.

SIMD Processing: single instruct operates on multiple
data elements using multiple processing elements. Array
processor: multiple spaces in parallel. Vector proces-
sor: same space, executed over time.

Vector Processors: operate on 1D arrays of data (vec-
tors) instead of scalars. Each vector instruct operates on
all elements in consecutive cycles. Requires vector regis-
ters, vector length (VLEN), and stride (VSTR) registers.

e Execution: pipeline stages operate on different vector
elements in parallel, deeper pipelines. No intra-vector de-
pendencies/control flow, so no interlocking needed.

e Limitations: memory bandwidth is bottleneck if com-
pute/memory operation balance not maintained, data im-
properly mapped to memroy banks.

e Advantages: No dependencies within a vector: effi-
cient pipelining and regular data-level parallelism; Fach
instruction does a lot of work: reduced fetch bandwidth;
Regular memory access: easy vector prefetching, memory
interleaving; Loops can be implicit: fewer branches

e Disadvantages: Only works well with regular (SIMD)
parallelism; Inefficient for irregular tasks (e.g., pointer-
based search), performance improvement limited by vec-
torisability of code.

10.

11.

Each vector register holds up to N values, each M bits
wide. VLEN specifies the number of elements to operate on
(VLEN < N). VMASK is a bitmask indicating which elements
to operate on, typically set by vector test instructions, e.g.,
VMASK[i] = (V} == 0). Also has vector stride VSTR.

Vector Functional Units: use deeply pipelined hard-
ware to execute operations, each stage of which handles
one vector element per cycle. Such vectors are indepen-
dent, so control logic is simple; high throughput and effi-
cient parallel execution. Has fast clock cycle.

Need to load/store multiple elements, separated from each
other by a constant (usually 1) distance (stride). Load
elements in consecutive cycles if can load one per cycle.
To handle those taking longer than 1 cycle, need to bank
the memory and interleave elements across banks.

Memory Banking: memory divided into independently
accessible banks that share address and data buses (min-
imising pin cost). Start, complete one bank access each
cycle and sustain N parallel accesses to different banks.

addresspext = addressprey + stride. If stride=1 and consec-
utive elements interleaved across banks, number of which
is > bank latency, then can sustain 1 element per cycle
throughput.

Vector Chaining: data forwarding from one vector func-
tional unit to another to increase operation speed.

SIMD Array Processors: consist of a grid of identi-
cal processing elements (PEs), each with its own local
memory (1D or 2D mesh). A single control unit broadcasts
the same instruction to all PEs, which execute it in lock-
step on their own local data. Suited for data-parallel tasks
like matrix operations, where each PE handles a portion
of the data independently.

(i) Vector processors (temporal parallelism) streams 1
instruct to many data elements through a deeply pipelined
functional unit, processing one element per cycle.

(ii) Array processors (spatial parallelism) use many
processing elements to execute the same instruction si-
multaneously, each on its own data.

(i) VP parallelise over time, (ii) AP parallelise over space.

GPU

13

Execution Model (Hardware): how hardware executes
code: out-of-order execution, vector, array, dataflow pro-
cessors, multiprocessor, multithreaded processor.

Programming Model (Software): how the program-
mer expresses the code:

1. Sequential (SISD): plain scalar code, one instruction 10. Hardware is free to schedule thread blocks. Each block

on one piece of data at a time.

2. Data Parallel (SIMD): programmer explicitly writes
code to apply the same operation across multiple data el-
ements in parallel.

3. Multithreaded (MIMD/SPMD): compiler generates
threads to execute each iteration, each doing same thing
on different data. Executed on MIMD or SIMT.

4. Dataflow: instructions fire as soon as their operands
are ready, not in program order—ideal for fine-grained,
irregular parallelism.

Graphics Processing Unit (GPU) is a SIMT Machine
that uses sets of threads executing same instruction dy-

namically grouped into warps, executed by Single In-
struction Multiple Thread (SIMT) model.

Pros: SIMT can treat each thread separately, so execute
independently, hence MIMD processing; warp grouping is
flexible, so maximise benefits of SIMD processing.

Warp is a set of threads executing the same instruction
(same program counter) on different data. Follows Single
Program Multiple Data (SPMD) model. Not exposed
to GPU programmers.

Grid is the code that independently executes on GPU
comprising thread blocks (sets of threads) indexed by
block ID. Different blocks can’t communicate directly,
must use atomic memory operations in global memory.
Threads in a block can synchronise and share data via
low-latency shared memory (max 512 threads per block).

Same instruct in different threads uses thread id to in-
dex and access different data elements. GPU hardware
handles thread management, not OS.

CPU runs sequential or modestly parallel code, while
GPU executes massively parallel kernels as blocks of
threads. Parallel kernel of device: KernelA<<<nBlk,
nThr>>>(args);, for nBlk # blocks and nThr # threads.

GPU Streaming Multiprocessor (SM) is the core
unit containing multiple Streaming Processors (SPs)
(CUDA cores) arranged as SIMD lanes. A Warp Sched-
uler picks a ready warp (SIMD thread), and the Dis-
patch Units issue its instruction simultaneously to all
SPs, with each SP executing one lane. The scheduler can
switch warps each cycle since threads are independent,
hiding latency across many SIMD pipelines.

Branching: in SIMT, selected threads can be activated
or deactivated s.t. instructs and data are processed only
on active threads, while the local data remain unchanged
on inactive threads.

11.

can execute in any order relative to other blocks.

Warp-Level FGMT, or fine-grained multithreading has
one instruction per thread in pipeline at once (no in-
terlocking); interleaves warp execution to hide latencies.
Register values of all threads stay in register file, enables
long latency tolerance of millions of pixels for operations
such as memory access.

Symmetric Multproc & Cache Coherence

1.

4.

14

Symmetic Multiprocessor (SMP): standalone com-
puter with: > 2 similar capacity and same memory access
time processors, all performing same (symmetric) func-
tions; share memory, 1/O; internally connected by bus
(passive medium). Controlled by integrated OS.

SMP Organisation: bus has control, address, data
lines. Direct Memory Access (DMA) to I/O with:

e Addressing: distinguish modules on bus to determine
src, dest of data.

e Arbitration: any 1/O module can temporarily function
as "master”.

e Time-sharing: when one module is controlling the bus,
others are locked out.

Bus organisation should be simple, flexible: easy
to add processors to the bus; reliable: device failure
shouldn’t propagate to whole system.

Disadvantages: all memory references pass through
common bus, limiting performance by bus cycle time. Fix
by each processor having cache memory, reducing # bus
accesses, but leads to cache coherence problems.

Cache coherence: if a word is altered in one cache, it
should invalidate or update a word in another cache, so
other processes must be notified of every change.

e Software solutions: need less hardware, detect prob-
lems at compile time (faster), but takes conservative deci-
sions, so inefficient cache utilisation.

e Hardware solutions (cache coherence protocols):
runtime problem detection. Only deal with the prob-
lem when it happens, so better cache utilisation (faster).
Transparent to programmer and compiler, so simpler.

Directory Protocol: a main memory directory records
which caches hold copies of which shared block. On
a write, consult directory to invalidate or update those
caches, avoiding broad- casts. Scales to large, hierarchi-
cal interconnects but can become a central bottleneck and
adds directory-storage overhead.

6.

9.

10.

11.

Snoopy Protocol cache controllers listen (snoop) on
shared bus to detect reads/writes to lines it holds. On
a write, controllers broadcast updates (write-update) or
invalidate their copies (write-invalidate). It’s simple on
a bus-based multiprocessor but generates extra bus traffic
and doesn’t scale well to complex networks.

Write-update: multiple readers/writers, word to be up-
dated distributed to all others on shared line, all update.

Write-invalidate (MESI): multiple readers, one writer,
invalidate all other caches on the line upon write, marking
lines modified, exclusive, shared, invalid; cache has
2 status bits for those. Uses snoop bus arrangement and
write-back cache policy. Useful for multicore processors.

RH Read hit

M E S 1 RMS Read miss, shared
RME Read miss, exclusive
Modified Exclusive Shared Invalid WH Write hit
Thi he i WM Write miss
is cache line SHR Snoop hit on read
valid? Yes Yes Yes No SHW

Snoop hit on write or
read with-Intent-to-modify
(@ Dirty line copyback

The memory

. out of date valid valid —
copy is...

Copies exist in No No Maybe Maybe € Invalidate transaction
other caches?

A write to this does not go to does not go to ® Read-with-intent-to-modify

line... bus bus

goestobus and | goes directly to
updates cache bus

® Cache line fill

»‘S"R)

Shared

Invalid _RM5_®_> Shared | Ry

\% - %

/ s ? e o
Modified Exclusi Modified

RH ied €«——— WH clusive RH

p- -/

)

(a) Line in cache at initiating processor

Invalid -g————SHW-

SHR —————>

’ &ll)

N

Exclusive

4_®_WM—

(b) Line in snooping cache

MESIF (Intel): extends MESI with a Forward (F) state
(special shared line owner). On a read miss only the
F cache responds (avoiding multiple sharers replying or
memory access), improving scalability in distributed/co-
herent systems.

MOESI (AMD): adds an Owned (O) state to
MESI—granting exclusive write rights while still supply-
ing data to others—so that dirty lines can be forwarded
directly from cache to cache without first writing back to
main memory.

Multiprocessor OS design considerations: simulta-
neous concurrent processes, scheduling, synchronisation,
memory management, reliability and fault tolerance.

Multithreading, Multicore Systems

1.

Process: active program in memory with: resource
ownership, virtual address space to hold the data and
scheduling to optimise execution order, interleaved us-
ing PCB stack process switch managed by OS.

15

Thread: dispatchable unit of work within a process.
Thread switch is cheaper than a process switch since
only the thread’s context (not the entire process state)
must be saved and restored.

Multitasking: OS-based switching between processes (or
threads) via context switch. Multithreading: hardware-
based partitioning of the instruction stream into multiple
concurrent threads.

Hardware Multithreading: have multiple thread con-
texts in a single processor.

Pros: memory, dependency and branching latency tol-
erance through better resource and hardware utilisa-
tion; improved system throughput (reduced context
switch penalty) using thread-level parallelism and better
superscalar/out-of-order (OoO) processor utilisation.

Cons: require multiple thread contexts implemented in
hardware (area, power, latency, cost) and reduced single-
thread performance from resource sharing & contention;
switching penalty.

Fine-grained multithreading (cycle by cycle): switch
to another thread every cycle s.t. no 2 instructions from
the thread are in pipeline concurrently. Improved pipeline
utilisation, tolerates control/data dependency latencies by
overlapping latency with useful work from other threads.

Pros: no intra-thread dependency or branch-prediction
logic, idle/bubble cycles reused for other threads, and
overall higher pipeline utilization and latency tolerance.

Cons: extra hardware complexity (multiple contexts and
thread-selection logic), reduced single-thread throughput
(one fetch per N cycles), increased cache/memory con-
tention, and remaining cross-thread dependency checks.

Coarse-grained multithreading: switch to a different
hardware context when a thread is stalled due to cache
miss, synchronisation event of floating point operations.

Pros: very low hardware complexity (no per-cycle thread-
selection or branch/dependency logic), and switches hap-
pen infrequently.

Cons: each switch incurs a full pipeline flush (dead cycles)
or complex hardware to save pipeline state, single-thread
throughput drops to 1/N of the pipeline bandwidth.

Finer the granularity the less constrained the programmer
is in parallelising a program, but the more significant part
of the execution is taken by threading system overhead.

Functional Unit (FU) utilisation: data dependencies re-
duce FU utilisation in pipeined processors.

10.

11

12.

13.

14.

e Superscalar and out-of-order machines: FU is under- 15. Each core may employ superscalar or SMT. But, SMT

utilised because of vertical and horizontal loss (wasted
space in pipeline).

e Predicated Execution: convert control dependencies
into data dependencies, improving utilisation but poten-
tially discarding some results.

e Chip Multiprocessor: partition FUs across cores, still
limited single-thread performance and FU utilisation.

e Coarse-grained MT: instructs from only one thread
can be issued during any cycle; uses blocked MT.

e Fine-grained MT: still low single-thread performance
and FU utilisation due to intra-thread dependencies.

e Simulatenous Multithreading: utilise FUs with in-
dependent operations from same or different threads.

Simultaneous Multithreading (SMT): most common
implementation, extends fine-grained multithreading on
top of a multiple-issue, dynamically scheduled processor.
Uses thread-level parallelism to improve FU utilisation by
allowing instructions from multiple threads to issue in the
same cycle. Enabled by register renaming and dynamic
scheduling to resolve dependencies.

Fetch Decod Queu Reg Execut Dcach Reg Retire
e/Map e Read e e/Store Write
Buffer

N s

Dcache Regs

Chip multiprocessing (multicore): entire processor
(core) replicated on single chip, each such processor han-
dles separate threads. Chip logic area is used effectively
without increased pipeline design complexity.

. Interleaved, blocked MT are concurrent: better re-

source utilisation as delay event penalties avoided). SMT,
multicore are parallel: replicated execution resources,
increased performance through parallelism.

Pollack’s rule: performance x v/die area (proportional).
Multicore has potential near-linear improvement, but only
if software can take advantage.

Multicore organisations depend on: # on-chip cores;
levels and amount of cache memory shared. In general:

a) Dedicated L1 cache, b) dedicated L2 cache, c¢) shared
L2 cache and d) shared L3 cache.

Shared higher-level cache reduces overall miss rates
(constructive inference), doesn’t replicate data in multiple
cores, amount of cache allocated to each core is dynamic.
Interprocessor communication is easy (shared memory),
moves cache coherency problem to lower cache levels.

16.

17.

18.

19.

20.

21.

16

with 4 cores each supporting 4 threads appears to OS the
same as a processor with 16 cores, hence easier for software
to fully exploit parallel resources.

Effective applications for multicore processors:

e Native MT: thread-level parallelism, have small num-
ber of highly threaded processes.

e Multi-process: process-level parallelism, have many
single-threaded processes.

e Java: embrace threading in fundamental way; JVM is
multi-threaded process.

e Multi-instance: virtualising technology provides some
degree of isolation (secure) to application instances.

HSA (Heterogeneous System Architecture): uni-
fied CPU-GPU architecture with shared virtual mem-
ory space, coherent cache policy, and unified program-
ming interface. Enables CPUs and GPUs to access the
same data and coordinate efficiently, supporting hybrid
programs that exploit both CPU serial power and GPU
parallelism. OS/hardware manage memory paging and
coherence transparently.

Uniform Memory Access (UMA): all processors have
access to all main memory parts using loads and stores.
Access time to all regions for different processors is the
same. Standard for SMP, but doesn’t scale well, limits #
cores that can be put together, architecture dependant.

Nonuniform Memory Access (NUMA): a single ad-
dress space visible to all CPUs, access to remote memory
via LOAD and STORE instructs, but slower than local mem-
ory. Allows for transparent system-wide memory.

Cache-coherent NUMA (CC-NUMA) maintains CC
among all caches in all processors. Caching helps with
remote data access, but brings back CC issue. Can fix
using bus snooping, but too expensive if many CPUs, so
use directory-based protocol: associate each node with
directory for its RAM blocks, DB stating in which cache
block is located and what is its state.

Pros: performant at parallelism levels higher than SMP.
No major software changes. Avoid performance drop from
remote memory access with good L1/L2 cache design, soft-
ware with good temporal locality, and virtual memory sys-
tems that migrate pages closer to where they’re used.

Cons: not transparent, OS must manage page/process
allocation and load balancing explicitly. Failure of a node
is hard to recover from, raising availability concerns.

Clusters: group of interconnected computers (nodes)
working together as a unified computing resource that can
create the illusion of being one machine.

22. Clusters provide high incremental performance, absolute
scalability, high availability superior price/performance.

Clustering Method Description

Benefits

Limitations

Passive Standby A secondary server takes over in case

of primary server failure.

Active Secondary: The secondary server is
also used for processing

tasks.

Separate Servers Separate servers have
their own disks. Data

is continuously copied
from primary to secondary
server.

Servers are cabled to

the same disks, but each
server owns its disks. If
one server fails, its disks
are taken over by the
other server.

Servers Connected to
Disks

Servers Share Disks Multiple servers simultaneously share
access

to disks.

Easy to implement.

Reduced cost because
secondary servers can be used for
processing.

High availability.

Reduced network and
server overhead due to
elimination of copying
operations.

Low network and server overhead.
Reduced risk of downtime caused by
disk failure.

High cost because the secondary
server is unavailable for other
processing tasks.

Increased complexity.

High network and server
overhead due to copying
operations.

Usually requires disk
mirroring or RAID technology to
compensate

for risk of disk failure.

Requires lock manager
software. Usually used
with disk mirroring or
RAID technology.

23. Revisited: instruction execution cycle in a CPU:

24.

25.

26.

Instruction Operand Operand
fetch fetch store
Multiple Multiple
operands results
Instruction Instruction Operand Data Operand
address operation ——p address g —p address
F F 3 Operation 3
calculation decoding calculation calculation

Instruction complete,
fetch next instruction

Indirection

Return for strir
or vector data

Indirection

ng

No
interrupt Interrupt
check
l Interrupt
Interrupt

Asymmetry: enables specialisation, finding balance be-
tween purely general and special purpose approaches.

Pros: Can enable optimisation of multiple metrics, adap-
tation to workload behaviours or special-purpose benefits
with general-purpose usability /flexibility.

Cons: Higher overhead in management (scheduling onto
assymetric components) and more complexity in design,
verification than symmetric design. Overhead in switch-
ing between multiple components can lead to degradation.

Best if: serialised code section — one powerful large core;
parallel code section — many weak small cores. Small
cores much more energy and area efficient than large cores.
Large cores are power-ineflicient: e.g., 2x performance for
4x area (power).

Asymmetric Chip Multiprocessor (ACMP) pro-
vides one large core and many small cores. Accelerates

serial part with large core (2 units), executes parallel part
on small and large cores for high throughput (1242 units).

Feature

Large Core

Small Core

Instruction Order
Fetch Width
Pipeline Depth
Branch Prediction
Functional Units
Trace Cache

Memory Speculation

Out-of-order
4-Wide fetch
Deeper pipeline
Aggressive (hybrid)
Multiple

Present

Supported

In-order
2-Narrow fetch
Shallow pipeline
Simple

Few

Absent

Not supported

17

