
Lecture Notes
CS255 - Artificial Intelligence

Rational Agents

1. Agent is an entity that perceives P and acts A, hence is
a function or a mapping f : P → A.

2. P={abilities, goals, stimuli, past knowledge/experiences}.

3. Rational action is one that maximises the expected
value of performance measure given the percept sequence.

Dimension Possible values

Modularity flat, modular, hierarchical

Planning horizon static, (in)finite/indefinite stage

Representation states, features, relations

Compute limits perfect/bounded rationality

Learning knowledge given, knowledge learned

Sensing uncertain. fully observable, partially observable

Effect uncertainty deterministic, stochastic

Preference goals, complex preferences

Number of agents single agent, multiple agents

Interaction offline, online

4. Modularity: one level of abstraction is flat, separate
modules understood separately is modular, modules re-
cursively decomposed into other modules is hierarchical.

5. Planning horizon: Static (non-planning) world doesn’t
change, if agent reasons about a fixed finite number of
steps, then finite, if finite but not predetermined, then
indefinite, if agent goes forever, then infinite stages.

6. Representation: State is one way the world could be,
features (propositions) describe a state, relations are
associations between distinct objects, or individuals.

7. Computational limits: In perfect rationality, agent
determines best action without a resource bottleneck, if
it’s bounded, then have to act according to limitations.

8. Uncertainty has sensing and effect dimensions. Agent
can know what is true (no uncert.) or ∃ set of possible
states (disjunctive uncert.), or there is probability dis-
tribution over the worlds (probabilistic uncert).

Uncertainty can view all world states (fully-observable)
or only some states given agent’s stimuli (partially-obs).

Deterministic agent knows result state given the action
and the current state, Stochastic doesn’t.

9. Preferences (goal) can either be a specific achievement,
or complex (involves tradeoffs), where order (ordinal)
or absolute values (cardinal) of the parameters matter

10. Interaction: agents can reason before (offline), using
knowledge base or between (online) receiving information
and acting. Can be multiagent - agent reasons strategi-
cally about reasoning of other agents, else single agent.

11.Representation: rich, compact, natural, maintainable.

12.Optimal solution is the best, satisficing is good enough,
approximately optimal is close the best theoreti-
cally possible, and probable solution is a likely one.
Common-sense reasoning: making conclusions about
the unstated assumptions.

13. Can quantify the value of information; anytime algo-
rithm can provide a solution at any time, performs better
given more time.

14. Symbol is a meaningful physical pattern that can be ma-
nipulated by the symbol system. PSS Hypothesis: it
is sufficient for GAI. Knowledge/symbol level is in terms
of knowledge/reasoning it has/does.

Agent Architect., Hierarchical Control

1.

Agent interacts with environ-
ment through its body made
up of sensors that interpret
stimuli (percepts) and actua-
tors that perform actions (com-
mands). Controller receives
percepts from the body.

2. Let t be set of time points. Percept/Command trace
(PT/CT) is sequence of all percepts/commands ever re-
ceived/output by the controller. Transduction is a func-
tion f : PT → CT and is causal (controller) if all CT up
to time t depend only on percepts up to t.

3. Agent only has access to what is remembered, so memory
of belief state encodes all of the agent’s history that it
has access to at time t.

4. Controler has belief state remember(belief state,percept)
func that returns next belief state, command do(memory,
percept) func that returns the command for the agent,
and higherPercept(memory,percept,command) that uses
hierarchy of lower-level percepts and past memories.

1

5. Hierarchical system (controller) architecture comprises
layers, and is faster, more flexible than serial approach.

6. Purely reactive agent doesn’t have memory, dead reck-
oning agent doesn’t perceive the world. Both aren’t useful
in complex worlds, so need to create a rational f : P → A
mapping or a trigger to action lookup table approximation

7. Reflex Agents (left) follow condition-action rules, but
assume there is a correct decision to make. Model-based
reflex agents (right) have state that holds the knowledge
about updates in the world, works if ∃ correct decision.

8. Goal-based agents (left): environment state too broad,
need a goal and effects of actions to narrow the context
down. But usually too many goals, need to prioritise us-
ing utility function (right), can measure importance of
uncertain achievements against their likelihood.

9.

Learning Agents are used
when the information about
the environment is incom-
plete. Percepts improve
agent’s ability to act in the
future as they’re fed into
the Performance element
(PE) to produce actions (for
non-learning agents it’s the
whole agent), learning ele-
ment takes knowledge of

PE and feedback from a critic (performance measure/s-
tandard), and suggests improvements to the PE. Finally,
problem generator suggests actions in pursuit of new
informative experiences, without it PE would do what it
thinks is best, settling for less exploration.

Uninformed Search

1. Problem-solving agent is a goal-based agent that de-
termines sequences of actions that lead to desirable states.
Need to formulate 1. Goal given in the curr. situation, 2.
Problem comprising permissible actions (operators) and
states to consider, then 3. Search the sequence of actions
and 4. Execute them. Can be online or offline.

2. It’s flat, represented with states, is in indefinite stage, fully
observable, deterministic, prefers goals, is single-agent,
knowledge is given, has perfect rationality and runs offline.

Offline Problem-Solving Agent

def problem_solving_agent(p) -> action:
p, s, g = inp(), {}, null #percept/action_seq/goal
state ← Update-State(state, p)
if not s:
g ← Formulate-Goal(state)
problem ← Formulate-Problem(state,p)
s ← Search(problem)

action ← Recommendation(s,state)
s ← Remainder(s,state)
return action

3. Single-state problem is deterministic and fully observ-
able, Multiple-state problem is deterministic but par-
tially observable, agent manipulates sets of possible states.
Contingency problem is stochastic and partially observ-
able: don’t know curr state or result of action, so use sen-
sors and solution is a tree of contingency branches, often
interleave search and execution. Exploration problem
is online, so no action plan (travelling without a map).

4. State-space problems comprise a set of states, start
states, set of actions, action function producing new
states given state curr state and action, a set of goal states
(goal(s)) and a criterion that specifies the quality of an
acceptable solution. Can get complex, so may abstract.

5. State-space digraph G = (N,A) (nodes and arcs).
Node n2 is a neighbour of n1 if ⟨n1, n2⟩ ∈ A. Given a set of
start and goal nodes, a solution is a path ⟨nstart, .., ngoal⟩.

6. Uninformed tree search is usually DFS or BFS, where
queue is called frontier. Need to analyse completeness,
optimality, time and space complexity. To account for
loops, keep a frontier of explored paths from the start
node. The way it’s expanded defines the search strategy.

7.
Graph Search Algorithm

graph, start_nodes, isGoal(n)::bool, frontier={⟨s⟩}
while frontier: # unvisited if graph, all if tree
select and remove path ⟨n0, .., nk⟩ from frontier
if goal(nk): return ⟨n0, .., nk⟩
for n in nk.neighbours: frontier.add(⟨n0, .., nk, n⟩)

2

8. Lowest-cost-first (LCF) graph search selects the
path with the lowest cumulative cost(⟨n0, . . . , nk⟩) =∑k

i=1 cost(ni−1, ni) from the frontier. If costs are equal,
nodes are expanded in BFS (alphabetic) order.

Informed Search

1. Improve offline search efficiency and reliability using prob-
lem specific knowledge. Uninformed usually inefficient.

2. Heuristic Search: use an efficient heuristic function h(n)
(can be extended to paths), or the estimate of the optimal
solution to guide the search. h(n) is an underestimate if
∄ path from n to a goal with cost < h(n). An admissible
heuristic is a nonnegative h(n) that never overestimates
the cost to reach the goal, (so is ≤ goal).

3. Consistent heuristic: is one satisfying monotone re-
striction h(n) ≤ cost(n, n′)+h(n′) for any arc ⟨n, n′⟩ and
ensures that first path found to a node is lowest-cost one.

4. Best-first Search treats frontier as a PQ ordered by
heuristic h(n). In DFS, it would select the node appearing
closes to the goal, inGreedy best-first search - the path
p with lowest h(p). For branching factor b, path length n,
Time: O(bn), Space: O(bn), not complete nor optimal.

5. A∗ Search uses path cost cost(p) and heuristics h(p),
resulting in f(p) = cost(p) + h(p). Frontier is PQ ordered
by f(p). Unlike Best-FS, considers cost from the very
start. A∗ is admissible (if a solution exists, it returns an
optimal one) if b finite, ∀e ∈ E : cost(e) > 0 and h(n)
is admissible. Time: exp(relative error in h×len(popt)),
Space: exponential, as it keeps all nodes in memory.

6. Cycle pruning: paths ⟨n0, .., nk, n⟩ where n ∈ ⟨n0, .., nk⟩
are not added to the frontier. Can check in O(1) with
hashmap (DFS) or O(len(p)) for path p else.

7. Multiple-Path pruning: prune a path to node n when
search has already found a path to n. Maintain a closed
list at the end of explored paths: for path ⟨n0, ..nk⟩, if nk

in the closed list, the path is discarded. Not yet admissible

8. Direction of Search is symmetric: given forward or
backward branching factor or the number of arcs (out
of)/into a node bout, bin and search complexity bn, should
use min(bout, bin) (sometimes more efficient to search from
goal to start). Backwards graph not available if dynami-
cally constructed, but runs in O(2bd/2) - exp faster.

9. Bidirectional search: forward and backward search si-
multaneously, but need to ensure they meet.

Island Driven Search: find places where the two must
meet (pass through) between start and goal s, g. May need
problem-specific knowledge, and hard to guarantee opti-
mality, but mbk÷m ≪ bk, subproblem islands solved using
hierarchy of abstractions: for table dist(n) from n to g:

dist(n) =

{
0 if is goal(n)

min⟨n,m⟩∈A(|⟨n,m⟩|+ dist(m)) otherwise

This can be used locally to determine what to do, defin-
ing a policy of which arc to take from a given node. DP
requires a lot of space, dist() is continuously recomputed.

10.Bounded DFS doesn’t expand paths exceeding the
bound. Iterative-deepening search performs Bounded
DFS at each bound starting at 0 until the goal is found,
mimics BFS, but uses linear space, although has asymp-
totic overhead of

∑kcost(k)×b÷ (b− 1) at depth k.(??)

11.Depth-first Branch-and-Bound DFS with heuristic
that finds optimal solution in linear space. Set bound to
estimate of cost(popt), prune if finds path p s.t. cost(p) +
h(p) ≥ bound. If non-pruned path p′ reached g, set
bound=cost(p′). Space nonlinear in Multi-path pruning.
Can initialise heuristic to ∞ or maximum depth.

12.Effective branching factor b∗ for A∗ tree-search ex-
panding N nodes and solution depth d, is the branching
factor of a uniform tree of depth d containing N nodes:
N = 1+(b∗)1+ ..+(b∗)d. E.g. d = 5, N = 52→ b∗ = 1.91.
Experimentally, heuristics with lower effective branching
factors are better. h2 dominates h1 if ∀n : h2(n) ≥ h1(n).

13. Generally, A∗ tree-search expands fewer nodes using
dominating heuristic (all with f(n) < (f∗=cost(popt)),
or all nodes with h(n) < f∗−g(n) where g(n)=cost(p). So,
non-dominant h1 may expand more nodes, hence provided
being admissible, is worse than dominant.

14. Can derive admissible heuristics from the exact solution
cost of a relaxed (fewer restrictions on operators) version
of the problem. Generate several admissible heuristics,
and choose dominant h(n) = max(h1(n), .., hm(n)). Can
also set cost of subproblem = lower bound on cost of
complete problem.

3

15. Can store exact solution costs for each possible simpli-
fied (sub)problem (heuristic hDB) and construct Pattern
Database by searching backwards from goal using dy-
namic programming, finally choosing dominant heuristic.

16. Can create disjoint pattern DB by dividing up the
problem s.t. moves only affect a single subproblem, as
otherwise different databases wouldn’t be compatible.

17. Other approaches of deriving heuristics include statisti-
cal (run search over training problems and gather stats)
that expands fewer nodes but isn’t admissible, or select
features of state that contribute to heuristic.

Constraint Satisfaction Problems

1. CSP is a set of variables {V1, .., Vn} each with domain
Vi ⊆ DVi and hard constraints (legal combinations) on
its subsets. A solution is a variable value assignment sat-
isfying all constraints. Can be optimisation problem with
function of cost for each assignment, and the solution be-
ing an assignment minimising such cost.

2. Finite CSP domains have n variables of domain size d and
produce O(dn) complete assignments (e.g. Boolean SAT).
Infinite can’t be enumerated, need constraint language
e.g . Ia > Ja, solvable with linear constraints, undecid-
able with nonlinear ones (interval scheduling). Discrete↑.
Continuous solvable in P-time by linear programming.

3. Constraints can be unary: single var (X ̸= 5), binary:
var pairs (X ̸= Y), high-order: 3 or more vars, and pref-
erences/soft - maximising the assignment’s adherence to
which decreases the cost in optimisation.

4. Generate-and-Test algorithm (brute force): generate
assignment spaceD = DV1×..×DVn (set of total assign-
ments), and test each one against the constraints. Prod
of D of size d has dn possible assignments - inefficient.

5.
Backtracking Search (BS) (uninformed)

def BS(csp) → solution/failure:
return Recursive-BS({}, csp)

def Recursive-BS(assign, csp) → sol./fail:
if assign is complete: return assign
var←Get-Unassigned-Var(vars[csp], assign, csp)
for val in Order-Domain-Vals(var, assign, csp):
if val adheres to assign given Constraints[csp]:
add {var=val} to assign
result ← Recursive-BS(assign, csp)
if result ̸= failure: return result
remove {var=val} from assign

return failure

Backtracking algorithms: systematically explore D
one variable at a time (assignments are commutative),

evaluate immediately and prune if unsatisfying, every so-
lution appears at depth n, so use DFS with branching
factor b = (n− l) · d at depth l, so n! · dn leaves.

6. What variable should be assigned next? Minimum re-
maining values (MRV): choose the variable with fewest
legal values (fail first). Degree heuristics: choose the
variable with the most constraints on remaining variables.
In what order should its values be tried? Least con-
straining value (LCV): given a var, choose the value
that rules out the fewest values in remaining vars.

7. CSP as graph search: suppose node N is assignment
of values to variables: X1 = v1, .., Xk = vk, then select Y
not yet assigned in N , for each value yi ∈ dom(Y) : X1 =
v1, .., Xk = vk, Y = yi is N ’s neighbour if consistent with
constraints. Start with empty assign., goal is a satisfying
total assignment.

8.

Constraint network: circu-
lar node for variables (and their
domain), rectangular node for
each constraint, both con-
nected by an arc ⟨X, c⟩ if con-
straint c involves X.

9. Domain Consistency: prune domains as much as possi-
ble before selecting values. If constraint c has scope {X},
then arc ⟨X, c⟩ is domain consistent if each value of X
satisfies constraint c.

10.Arc consistent ⟨X, c⟩ for c∈{X,Y1, .., Yk} if ∀x ∈ DX :
∃y1, .., yk where yi ∈ DYi s.t. c(X=x, Y1=y1, .., Yk=yk) is
satisfied. Every value of X must have ≥ 1 way to pick
values for Yi to satisfy c.

⟨X, r(X,Y)⟩ is arc consistent if ∀x ∈ DX : ∃y ∈ DY s.t.
constraint r(x, y) is satisfied. All vals in DX with no cor-
responding val in DY) are deleted to make it consistent.

11.Domain splitting (case analysis): split a domain, re-
cursively solve each half. Check all dependent (not from
scratch) arc consistencies at each domain reduction. There
are n/c subproblems each taking O(dc) to solve, hence
overall O(dcn/c·) - linear in n.

12.Theorem: if constraint graph has no loops (tree), CSP
can be solved in O(n · d2), compared to general O(dn).

13.Tree-Structured CSP algorithm: Choose a variable
as root, hierarchically order vars from root to leaves. For
j in range(n, 2,−1) remove inconsistent domain elements
for ⟨Parent(Xj), Xj⟩ (reverse order ensures deleted values
don’t influence consistency of processed arcs). For j from
1 to n, assign Xj consistently with Parent(Xj).

4

14.Nearly Tree-Structured CSP’s: initialise a variable,
prune it’s neighbours domains until it’s a tree. Cutset
Conditioning: init (in all ways) a set of vars s.t. the re-
maining constraint graph is a tree. Takes O(dc ·(n−c) ·d2)
for cutset size c, which is very fast for small c.

15.Variable Elimination: eliminate variables one by one,
passing their constraints to their neighbours. Algorithm:
if only 1 var, return intersection of the unary constraints
that contain it, else select var X, join constraints in which
X appears, forming constraint R1, project it onto its vari-
ables except X, forming R2. Replace all constraints in
which X appears by R2, recursively solve the simplified
problem forming R3, etc. Return R1 joined with R3. If
the final single var has no values, the network was incon-
sistent. Elimination follows elimination ordering.

Local Search

1. Iterative Improvement Algorithm: don’t keep track
of paths (memory efficient, often constant space) - goal
state is the solution, so iteratively check neighbours. Use-
ful for optimisation problems: state space = set of com-
plete configurations, goal is some subset (min)maximising
some objective function (e.g. Hamiltonian path).

2.
Hill-climbing (greedy local search)

def Hill-Climbing(problem) → solution state:
curr ← Make-Node(init-state[problem])
loop do:
next ← highest-valued successor of curr
if Value[next] < Value[curr]: return curr
curr ← next

3. Hill-climbing problems: local maxima can be suboptimal,
ridges may lead to oscillation and no progress.

Plateaux are flat, so search is random (shoulder if pro-
gression possible), limit sideways moves, else can get stuck.

4. Greedy descent (local search for CSP): find an as-
signment with zero conflicts (unsatisfied constraints).
Heuristic to be minimised is the number of conflicts.

5. Random walk: sometimes choose random variable-value
pair or participating in most/any/none conflicts.

6. Small/unordered domains → neighbour assignment
corresponds to choosing another value for one of the vars.
Large/ordered dom.: neighbours adjacent (”ab”, ”a”).
Continuous domains: gradient descent changes each
variable according to gradient of heuristic function in that
direction: Xi goes from vi to vi − η δh

δXi
with step size η.

7. Randomised Greedy Descent allows random steps
(walk): move to random neighbour, random restart: re-
assign random values to all variables k times k-restarts.
Subset of Stochastic (random) local search.

8. Measure stochastic algorithm performance: plot runtime
and proportion of runs solved within that runtime, mea-
sure how much time is available or how important is to
find solution to decide which algorithm is the best.

9. Simulated Annealing: pick variable and value at ran-
dom, if improvement, use it, else use it probabilistically
based on temperature T : move from current assignment
n to n′ with probability e−(h(n′)−h(n))/T

10.Tabu list of the k last assignments prevents cycling:
don’t choose ones in it. Total assignment = individual.

11.Parallel Search: Maintain population of k individuals,
at every stage update each one, report any solutions. Like
k-restarts, but uses k times the minimum number of steps.

12.Beam Search: like parallel search, but choose the k best
of all neighbours. When k = 1, it’s greedy descent, when
k =∞ it’s BFS. Value of k limits space and parallelism.

13. Stochastic Beam Search: choose the k next-generation
individuals probabilistically, proportional to heuristics:
usually Boltzmann/Gibbs distribution e−h(n)/T .

14.Genetic Algorithms (GA): related to stochastic beam
search, but successor states obtained from two parents.
Start with population of k randomly generated individ-
uals (states), represented as a string over a finite alphabet.

15. Each individual is evaluated by fitness function (better
state→ higher value) used to find reproduction probabili-
ties: e−h(n)/T or tournament selection (winner), according
to which individual pairs are then chosen. Below-threshold
values are culled (discarded). For each pair, choose ran-
dom crossover (position in the string), generate offspring
by crossing over parent strings. 12 + 34→ 14, 32.

16. GA’s take decreasingly large steps (simulated annealing)
as population converges. Can also have random mutation
with small probability . GA’s advantage is the ability to
crossover large blocks that evolved independently. Need to
choose representation corresponding to meaningful com-
ponents of solution. Useful for optimisation problems.

5

Adversarial Search

1. Adversarial search, or competitive multi-agent games
where opponents introduce uncertainty (opponent trying
to make the best move, randomness, or insufficient time
to decide on exact consequences of actions), need to deal
with contingencies when searching for the solution. In-
efficiency is heavily penalised.

2. Game has initial state, set of operators (successor func-
tions) deciding legal moves and resulting states, terminal
test : check if game over (in terminal state), and utility
function, or numeric value for terminal states (e.g. chess:
{win, lose, draw} = {+1, -1, 0}. Can build game tree.

Perfect Decisions

1. Game with 2 (Min, Max) players. Max moves first, needs
to form a strategy (correct Max’s move for each possible
Min’s move) to win anything Min tries to do. A Ply is a
single move by one of the player.

2. Minimax gives optimal strategy for Max. Minimax
value of a state is Max’s utility of being in that state
given both players play optimally. MinimaxValue(n) =

Utility(n) if n is a terminal

α = maxs∈Successors(n)MinimaxValue(s) if n is a Max node

β = mins∈Successors(n)MinimaxValue(s) if n is a Min node

Minimax obtains best achievable payoff against best play.

3. Minimax algorithm: 1. generate complete game tree, 2.
rate terminal states with utility function, 3. iteratively use
those utilities to find utilities of nodes one level up until
the root. 4. Max chooses the highest utility move. Com-
plete, optimal, Time: O(bd) (slow), Space: O(bd) (DFS).
Can extend to > 2 players, use utility vector.

4. Alpha-Beta Pruning: prune non-influential branches in
a complete search tree. For candidate node n the player
might move to, if ∃ a better choice m either at parent of
n or above, then n won’t be reached, prune it. α/β is the
best choice for Max/Min.

5. More efficient to examine best successors first, taking
O(bb/2) instead of O(b3b/4) if random.

Imperfect Decisions

1. Alpha-Beta still needs to search to the terminal states for
some of the tree, better use heuristic evaluation func-
tion to get a value for states and a cutoff test to decide
when to stop going down the tree.

2. Evaluation function gives an estimate of expected util-
ity for a given position, should order terminal states per
utility function. Most calculate features of a state, defin-
ing their equivalence classes. Can combine features (f)
using weighted (w) linear function w1f1 + .. + wnfn. If
features are not independent, use a nonlinear function.

3. Simple cutoff tests: checking if fixed depth is reached, or
Iterative deepening (continue until out of time). Both
are unreliable (bc of approximation in eval func).

4. Hence, use Quiescent Search: only apply eval func to
quiescent (those not changing soon) positions, mean-
while, expand nonquiescent positions - restricting to cer-
tain types of moves to quickly resolve pos. uncertainties.

5. Horizon problem: when have unavoidable damaging
move from opponent, a fixed-depth search is fooled into
viewing stalling moves as avoidance. Can fix using:

6. Singular extension search: choosing a move clearly
better than all others. Forward pruning: immediate
pruning of moves from discarded future nodes, but only
safe in very deep search trees; if two symmetric or equiv
moves - consider one of them.

7. In games with chance, can’t construct complete game
tree, so include chance nodes, labelled with result and
probability. Their expected value, Exp-minimax(n) =

Utility(n) if n is terminal node

maxs∈Successors(n) Exp-minimax(s) if n is a Max node

mins∈Successors(n) Exp-minimax(s) if n is a Min node∑
s∈Successors(n) P (s) · Exp-minimax(s) if n is a chance node

8. Exp-minimax considers all n distinct outcomes of each
chance node, so O(bmnm). Can prune chance node with-
out considering its children if put bounds on utility func-
tion (chance node is an average, within known bounds).

9. Monte Carlo Tree Search (MCTS) addresses branch-
ing factor and difficulty of defining eval function in alpha-
beta tree search. Estimate value of a state from aver-
age utility over playouts (simulations) of complete games
starting from the state. A playout policy determines
which moves to make during a playout: learn from self-
play or game-specific heuristics (e.g. chess capture moves).
Pure MCTS: do N simulations. Use of UCT balances ex-
ploration of states with few playouts and exploitation
of those that have done well.

6

10. MCTS maintains and grows a search tree on each itera-
tion using: selection: start at root, choose a move using
selection policy (UCT); expansion: generate a new child
of selected node; simulation: playout from newly gener-
ated child node (determine outcome, don’t record these
moves), and back-propagation: use result of playout to
update search tree up to the root. Repeat for fixed num of
iters or until out of time, return move with highest num of
playouts (2/3 worse than 65/100 because of uncertainty).

11.Upper Confidence Bounds (UCT) is an effective se-
lection policy using upper confidence bound formula:

UCB1(n) =
U(n)

N(n)
+ C ×

√
logN(Parent(n))

N(n)

where U(n)/N(n) is total utility/number of playouts
through n, Parent(n) is n’s parent in the tree, C is
constant balancing exploitation and exploration. Playout
computed in O(height) as only one move at choice point.

Planning with Certainty

1. Knowledge Base (KB) is database of facts/beliefs, or
a set of sentences in formal knowledge representation lan-
guage (list, array, db etc.). Inference engine is a mech-
anism for reasoning about such beliefs.

2. KB allows building agents declaratively: Tell (observe
& remember) it what to do (add sentence). Agent can
Ask (decide), or query itself what to do, and answers fol-
low from KB through inference, following previous Tells.

3. Knowledge-based KB-agents can reason with infer-
ence and knowledge, can accept new goals, update
knowledge to adapt to environmental change and infer
unseen properties of the world from perceptions, so are a
better and more flexible solution for partially observable/-
dynamic environments than simple search.

4. KB-agents characterised by 3 levels: knowledge (episte-
mological): what is known, regardless of implementation;
logical: knowledge encoded in formal sentences; imple-
mentation: data structures/algorithms in KB.

5. KB may contain initial background knowledge. Logical
level hidden in Tell, Ask - both are internal to KB.

Simple knowledge-based agent

def KB-Agent(percept) → action:
t ← 0 # time counter
Tell(KB, Make-Percept-Sentence(percept,t))
action ← Ask(KB, Make-Action-Tell(KB,

Make-Action-Sentence(action,t))
t ← t+1
return action # logically reasoned action

6. Coercion: when no certainly safe moves available, reduce
uncertainty in the world by forcing (risk) the agent into a
known state.

Logic

1. Logics are formal languages for representing info s.t con-
clusions can be drawn. Syntax defines sentences, and
Semantics - their meanings, or a mapping of sentences
to facts (i.e. define truth). Facts follow facts.

2. KB entails sentence α, or KB ⊨ α iff α is true in all
worlds where KB is true. Inference producedure generat-
ing only entailed sentences is sound or truth preserv-
ing. Semantics help extract proof theory of language
(what reasoning steps are sound).

3. Inference KB ⊢i α means sentence α can be derived
from KB by procedure i. Procedure i is Sound when
KB ⊢i α→ KB ⊨ α, Complete if KB ⊨ α→ KB ⊢i α .

Searching vs Planning

1. Using simple search on real-world problems is infeasible
- too many options (unconstrained branching) and hard
to apply heuristics. So, use planning systems: repre-
sent states and goals as sets of sentences, and actions as
descriptions of preconditions and effects to allow for direct
connections between states and actions.

2. Divide-and-conquer by subgoaling: planner consider-
ing easier problems, then combining solutions. Little in-
teraction between subplans, else cost of combining is too
high (useless for 8-puzzle to consider each tile separately).

3. Planning relaxes requirement for sequential construction
of solutions, so can add obvious or important actions
where needed to reduce branching factor. Order of plan-
ning and execution are independent. Planning does better
than search in the real-world scenarios.

4.

7

5. Update knowledge base, if not already executing a plan,
generate a goal and a plan to achieve it. If goal infeasible
or achieved, set action to NoOp, once the plan is ready, ex-
ecute to completion. Minimal interaction w environment.

Simple Planning Agent

def Simple-Planning-Agent(percept) → action:
p, t ← NoPlan, 0 # plan, time counter
local G, current; # goal, curr state description
Tell(KB, Make-Percept-Sentence(percept,t))
current ← State-Description(KB,t) # where am I
if p == NoPlan: # no plan yet
G ← Ask(KB, Make-Goal-Query(t)) # what goal
p ← Ideal-Planner(current,G,KB) # plan

if p == NoPlan or p empty: action ← NoOp # nothing
else: action, p ← First(p), Rest(p)
Tell(KB,Make-Action-Sentence(action,t)) # step
t ← t + 1; return action

Situation calculus and Strips

1. Situation calculus is a way of describing change in first-
order logic. The world is a sequence of situations (snap-
shots of state of the world), generated from previous situ-
ations by actions, or Result(action,situation).

2. Fluents (functions, predicates) can change with time
given a situation argument At(Agent, S0 etc). Eternal
or Atemporal ones don’t change, so they don’t take sit-
uation arguments, e.g. Wall(0, 1) - it’s always there.

3. Possibility axioms of form Precondition ⇒ Poss(a, s)
describe when it’s possible to execute an action. Result-
ing action defines effect axioms of form Poss(a, s) ⇒
changes (i.e. executing the action if condition is met). E.g.
Poss(Go(x,y), s) ⇒ At(Agent, y, Result(Go(x,y), s)).

4. Situation calculus turns planning into a logical inference
problem with initial state: sentence about S0: At(Home,
S0)∧¬Have(Milk, S0) and goal state: logical query for
suitable situations.: ∃s : At(Home, s)∧Have(Milk, s).

5. Nothing in KB says if something doesn’t change: Frame
axioms capture non-changes due to an action. F fluents
and A actions require O(AF) such axioms. Frame prob-
lem is solved if representational (frame axiom prolifera-
tion), inferential is harder, but avoided by planning.

6. Successor-state axioms solve representational frame
problem. Each axiom is about a predicate P s.t. af-
ter an action, P is true and without it it’s false. But need
to list all such combinations, so use restricted language.

7. Strips, or Stanford Research Institute Problem Solver is
a planner where: states are conjunctions of predicates
applied to constants. Goals are conjunctions of literals.
Planner asks for a sequence of actions leading to goals.

8. Closed-world assumption: planners assume that state
descriptions that don’t mention a positive literal (non-
negated) are false. This assumption can be unreliable.

9. Operators comprise Action, Precondition (conjunction of
positive literals) referring to that action, and Effect (conj.
of free literals). Free literals are those not quantified.

10.Operator schema is an operator with variables. Oper-
ator is applicable in state s if can instantiate each var
satisfying precondition in s.

11. In standard search, nodes are concrete world states, in
planning search - partial plans. Open condition (OC)
is a not yet fulfilled precondition. Causal link (Si

c→ Sj),
e.g. Si achieves c for Sj , and order (≺) steps with respect
to one another, moving to fully instantiated plans.

12. Principle of least commitment: leave choices as long
as possible. Precond achieved iff it’s the effect of earlier
step and no possibly intervening step undoes it. Plan is
complete iff every precond is achieved, consistent iff no
contradictions in ordering or binding constraints.

13. Planning: Progression: move forward start → goal,
have high branching factor and search space. Regression:
move backward start ← goal , has lower branching factor,
but complex conjunctions. Partial plan is an incomplete
one, some steps not instantiated. Partial/Total order:
some/all steps ordered with respect to others.

14.Partial-Order Planner (POP) is a regression plan-
ner to search through plan space. Each iter add a step
fulfilling non-achieved preconds, establishing protected
links (those not breaking others), backtrack if inconsis-
tent. POP is sound, complete, systematic (no repetition).

1) Pick step Sneed with open condition c.
2) Choose step Schosen that fulfils c from operators or plan.
3) Add causal link Schosen

c→ Sneed and Schosen ≺ Sneed to
ordering. If Schosen is new, add Start ≺ Schosen ≺ Finish.
4) If thread/cloberrer to causal link, promote/demote.

15.
Op(Start) → Op(Drive) → Op(End)
Effect: at(Home) Precond: at(Home) Precond: at(Office)
Capabilities: — Effect: at(Office) Goal: delivered

16.Clobberer is a potentially intervening step that destroys
(protected) causal link condition. Protect them by en-
suring threats (clobbering steps) are demoted/promoted,
or ordered before/after the causal link.

17. Sussman anomaly: Early planners are focused on a sin-
gle conjunct at a time, so can’t guarantee minimal number
of operators.

8

Expanding POP and Hierarchical Decomposition

1. Problems with Strips: can’t express hierarchical plans,
complex conditions, time and resources, hence extend it
with Hierarchical Decomposition (HD).

2. HD includes nonprimitive and abstract operators that
can be decomposed into steps that implement them; they
are predetermined and stored in library of plans.

3. Plan p correctly implements nonprimitive op o if it’s
complete and consistent plan for achieving effects of o
given precond of o. This guarantees nonprimitive oper-
ator can be replaced by its decomposition in the plan.

4.
Hierarchical Decomposition HD-POP

def HD-POP(plan,ops,methods) → plan:
while not Solution(plan):
Sneed, c ← Select-Subgoal(plan)
Choose-Operator(plan,ops,Sneed,c)
Snonprim ← Select-Nonprimitive(plan)
Choose-Decomposition(plan,methods,Snonprim)
Resolve-Threats(plan)

return plan

However, must check that all operators are primitive.

5. Operator decomposition: add steps/bindings of method
to plan, remove Snonprim/backtrack at contradiction. Fol-
low least commitment ordering: Sa ≺ Snonprim becomes
Sa before latest steps of the method, Snonprim ≺ Sz be-
comes Sz after the earliest steps. Resolve any threats.
Finally, replace links to nonprim step with those to steps
that achieve the precondition.

6. Broaden op descript. Conditional effects (CE) of form

Effect : .. ∧ ¬Clear(y) when y ̸= Table

avoids premature commitment (effect with condition).
Select-Subgoal’s planner needs to consider precond of CE
if effect supplies a protected causal link. In Resolve-
Threats, any step with effect [¬c when p] poss. threatens
link Si

c→ Sj , fix by confrontation: ensure p’s not true.

7. Allow negated goals, consider ¬p matched by initial
state not containing p. Disjunctive preconditions al-
low Select-Subgoal to make a nonderterministic choice be-
tween disjuncts using principle of least commitment, hence
disjunctive effects may address coercion.

8. Can introduce universally quantified preconditions
∀x · X(x) ⇒ Y (x, ..) and effects. Now have restricted
first-order logic, so the world is finite, static and initial
state must give all objects a type T . Preconditions and
effects now have the form ∀x · T (x)⇒ C(x) for condition
C. Since the world is finite, static and typed, can expand
universal quantification into conjunction.

9. To deal with consumable resources, have numeric mea-
sures expressed as measure fluents e.g. FuelLevel.

10. Plan for scarce resource first, delaying causal links where
possible. Pick a plan step, do rough check on resource re-
quirements, resolve threats, hence trying all possible op-
erators. Time is also a resource, but 1. parallel operators
cost the maximum, not the sum, 2. it never goes back.

11. Real world deals with incomplete (unknown precond, dis-
junctive effects), incorrect information and can’t list all
precond, outcomes of actions (qualificaiotn problem.

12. Fix using conditional planning with sensing actions
to obtain information, but may create plans for un-
likely cases, better use Monitoring/Replanning: check
progress during execution, replan if necessary, but may
fail. The key difference is that steps have a context, to
check if executable, must insert actions to find info.

13. Sensing action may have any number of outcomes (check-
ing tire for puncture makes it wet), use it in param-
eterised plans where exact actions not known until
runtime. Runtime variables are unknown until sensed.
To preserve certain facts, use a maintenance goal
(start

c→goal), can use in loops: while c:.. .

14.Plan/Action monitoring: failure means preconditions
of the (remaining plan)/(next action) are not met. Replan
in both cases. Precond of remaining plan are causal links
starting at or before curr step and ending at or after it.

15.Bounded/Unbounded indeterminacy: unexpected
effects of actions can/can’t be enumerated,

16.Replanning from scratch is inefficient, rather try to get
”back on track” to the original plan, generating ”loop un-
til done”, introduce learning to avoid getting stuck (may
keep trying opening a door, but might be locked)

17. Alternatives to replanning: 1. Coercion: performing an
action to force world into a particular state to reduce un-
certainty. 2. Abstraction: ignore potentially unknown
details of the problem. 3. Aggregation: treat a large
number of objects as one aggregate predictable object.

18.Reactive Planning: abandon domain-independent
planning and use domain-specific procedural knowl-
edge, or a library of partial plans representing behaviour
collection. Select plan from library when agent needs it.

9

Knowledge Representation

1. Since thinking is retrieval of and reasoning upon relevant
knowledge, need to represent it somehow.

2. Knowledge is a relation defined by propositional atti-
tude between knower and a proposition (John knows
Earth is round), but infeasible to represent all true propo-
sitions, so use reasoning to bridge this gap. Reasoning
at each step + collection of known true propositions are
structural ingredients.

3. Represent knowledge as logical formulae, hence a proposi-
tion (true/false statement) might be: a∧b∧c. Knowledge
takes form of definite clause h← b, with body b (propo-
sition) and head h (literal determined by result of body).

4. The user is responsible for the indended interpretation
of the symbols and responses - the system doesn’t have ac-
cess to it (all it sees is symbols), so user must axiomatize
the domain (provide known true clauses).

5. Expert system=knowledgee+inference represents & rea-
sons with knowledge of ”specialist” interface to get advice
and solve problems. Consultation is a goal-tree search.

6. Have vocabulary of set O of names of objects in domain,
A of their attributes and V of values those attributes can
take. Obj-Attr-Val triples (o ∈ O, a ∈ A, v ∈ V).

7. Working memory WM stores facts (assertions/propo-
sitions) defining initial state of KB and state transition
operators. Facts are working memory elements (WME).

8. Production rules have sets of ”if P1 and .. and Pm” con-
ditions and consequent ”then Q1 and ... and Qn actions.

9. Recognise-act cycle: match ”if” conditions of rules
against elements in working memory, apply the rule (ar-
riving at a solution or adding a new fact) and (optionally)
delete from working memory, repeat until no rules or halt.

10. Global/Local inference control is domain (in)/dependent,
(hard)/coded in IE/as meta rules. The series of rules that
fire is called an inference chain.

11.Forward chaining (Bottom-up Ground Proof Proce-
dure): data driven, starts from known data, all possible
inferences will be made, so sound, deterministic, but per-
forms wasteful computation. left fig.

12.Backward chaining (Top-down Definite Clause Proof
Procedure): goal driven, tries to find evidence to prove
the goal, more efficient as unrelated facts won’t be in-
ferred. But, non-deterministic, based on choice of pro-
duction rules, can halt if some elements can’t be derived
(because query is conjunctive). right fig.

13.Ask-the-user system has askable clauses, the only way
to receive new information is from the expert, but only
works well with backward chaining (only ask when neces-
sary), as too many things to ask about otherwise. User
and system now have symmetric relationship.

14. Knowledge-level debugging can fix non-syntactic errors:
incorrect answer (either some variable or the rule itself
is wrong, ask the user), non-produced answer (no ap-
propriate rule for the var, rule should’ve fired, so some var
isn’t true. Solve recursively by finding all true vars not in
a rule), infinite loop (can’t happen in forward chaining
if refractoriness is applied; convert to digraph and check
for cycles, reassess the rules) and irrelevant questions
(needs reassessment of KB).

15.Conflict resolution: choosing which rule out of con-
flict set/agenda to fire. Can fire in order of appearance,
but rules have strong influence on outcome, so don’t guess,
use priority, but difficult to define it. So, use specificity:
fire most specific rule. Recency: fire rule that uses data
most recently entered the WM, refractoriness: rule only
allowed to fire once on the same data, preventing inference
loops. Domain specific/independent meta knowledge is
about knowledge, so use that too ”if two rules are..then..”.

16.WM only modified very slightly in each recognize-act cy-
cle, many rules share conditions, so create offline network
from rule antecedents with simple self-contained (unary)
α nodes (α : age > 27) and variable condition constraints
as β (higher-order) nodes (β : father ∼ name).

17.RETE algorithm: during operation of production sys-
tem pass new/changed WME tokens through network.
Those that make it through satisfy the rule, new conflict
sets are generated from those in previous cycles, so only
small part of WM needs to be matched. If can’t move
through network, reassess it when WME is modified

18. Rule-based systems provide easy mapping between expert
and format of rules and ability to represent and reason
with a lot of potentially uncertain knowledge, but may be
expensive, have to be supervised and may be brittle.

10

19.Assumption-based reasoning contains Abduction:
make assumptions to explain observations and Default
reasoning: assume normality, used to find consequences.

ABR has a set of closed formula F : facts, integrity con-
straints evaluating to false and H: possible hypotheses
(assumables). Need to find set of assumables implying the
given query. For each var in query select rule resulting in
that var being added to WM, replace such vars with con-
dition of the corresponding rule, repeat until all query vars
are assumables.

Planning with Uncertainty (Bayesian AI)

Probability

1. Use Probability instead of logic. Set of outcomes must be
well defined. Frequentistic view: repeatable identical ex-
periments (coin toss), objectivist : tendencies of objects to
behave in certain ways and subjectivist : deg. of belief.

2. Sample space Ω is a finite set of mutually exlusive and
exhaustive possible outcomes s1, .., sn (world states).

3. Probability measure (Ω, P) comes from the assignment of
P (s) ∈ [0, 1] to each state si ∈ Ω s.t.

∑
si∈Ω P (si) = 1.

Event (E ⊆ Ω) can be impossible: P (Φ) = 0, certain:
P (Ω) = 1, or otherwise P (E) =

∑
sj∈E P (sj).

4. Given prob space (Ω, P), random variable X is a func-
tion on Ω. Primitive proposition: var assignment or com-
parison. Proposition combines primitive propositions
with logical connectives (Heads ∧ X ̸= Y). Probability
of proposition α in relation to each possible state si is:
P (α) =

∑
sj∈Ω:α=True in si

P (si).

5. Expected value E[X] =
∑

si∈Ω P (si)X(si) is average
value of random var. Variance V ar[X] = E[(X−E[X])2]
measures the spread of the random variable.

6. Random Var X can be discrete, continuos or binary.
Probability distribution (PD) is function over X that
assigns a probability to each possible outcome in domain:
P (heads) = P (tails) = 0.5. If multiple vars then joint.

7. Conditional probability P (α|β) = P (α ∧ β) ÷ P (β).
Aka posterior prob. and P (α) ≡ P (α|true) is prior
prob. Conditional prob is not a measure of causality.

8. Rand vars X,Y are independent if P (X|Y) = P (X) ∧
P (Y |X) = P (Y), then P (X ∧ Y) = P (X)× P (Y). Con-
ditionally indep given Z if P (X|Y ∧ Z) = P (X|Z).

9. Total probability: given set of disjoint events Ai that
partition sample space Ω, then P (Ω) =

∑
i P (Ai) = 1.

Total prob. P (B) =
∑

i P (B∧Ai) =
∑

i P (B|Ai)P (Ai).
Product rule: P (A∧B) = P (B|A)×P (A). Chain rule:
P (a1 ∧ ..ai) = P (a1)× P (a2|a1)..× P (ai|a1 ∧ ... ∧ ai−1).

Bayes’ Rule: p(A|B) =
p(B|A)p(A)

p(B)
=

p(B|A)p(A)∑n
i=1 p(B|Ai)p(Ai)

p(B) = p(B|A)p(A) + p(B|¬A)p(¬A)

10. Given rand vars A,B with mutually exclusive states
a1, ..an, b1, ..bm and prob distrs P (A), P (B), join PDs
P (A,B) will contain m events where A in state ai, so
p(ai) =

∑m
j=1 p(ai, bj). B ismarginalized out of p(A,B).

11. Prob density function PDF P : R→ R+ integrates to 1.
P (a ≤ X ≤ b)=

∫ b
a p(X)dX. p(X=x)= 1

σ
√
2π
e(−x−µ)2/(2σ2)

Bayesian AI

1. Probabilistic inference procedure with query variable
X, evidence variable E and their observed values e, unob-
served variables Y , then to reason with uncertainty:

General inference p(X|e) = α·p(X, e) = α
∑
y

p(X, e, y)

Normalisation constant α = 1÷ [p(e) =
∑
x,y

p(x, e, y)]

Full join probability distribution (PD) is the KB.

2. Vars related through inference chains. For PD P of ran-
dom vars X ∈ V in DAG G=⟨V,E⟩, then (G,P) satisfies:
Markov Condition: nodes are conditionally indepen-
dent on the set of their non-descendents given their par-
ent. Like chain rule, but: P (a1∧..ai) = P (a1)×P (a2|a1)×
P (a3|a2)× ..× P (ai|ai−1)

3. Bayesian Belief Network (BBN) is a (G,P) satisfying
Markov cond, p(X1, ..Xn) =

∏n
i=1 p(Xi|PAXi), satisfies it

too. Nodes are vars, influencing others down the tree.
Using chain rule: p(X1, .., Xn) =

∏n
i=1 P (Xi|Parents(Xi))

4. Constructing BBN: by clarity principle, omniscient
agent must know a variable’s value. Define its topol-
ogy, including nodes (observable vars) and edges (qualita-
tive relationships between them), and define Conditional
Probability Tables (CPTs) {Xi : P (Xi|PAx)}.

5. Each node has ≤ k = maxi |parents(ni)| parents, max num
entries in CPT is 2k, max num entries in PD is 2kn.

11

6. Pearl’s Network: given a node ordering {X1, .., Xn},
process them in order: add to network, add arcs from min
set of parents s.t. Xi independent from any Xj<i and de-
fine PAXi , finally define CPT for Xi. Compact networks
are more tractable dense ones don’t represent independen-
cies or causal dependencies.

7. Markov condition entails only independencies, not depen-
dencies! Presence of an edge doesn’t imply there is a direct
dependency, but its absence does imply the opposite.

8. Types of evidence E: specific (E = e1), negative: (E ̸= e1)
or virtual, or likelihood (def new PD over E).

9. Probabilistic inference is either exact, where probs
are computed exactly (e.g. enumeration, variable elimina-
tion), or approximate, which produces a range of probs.
and eventually converges to the answer.

10. Types of reasoning: diagnostic (symptom → cause),
predictive (cause → symptom), intercausal (mutual
causes of a common effect; they are independent unless
effect is observed) and combined (query variable is par-
ent and descendent of some other observed vars).

11. Inference by Enumeration through every world consis-
tent with the evidence. From 1: y is the set of hidden
(/∈ evidence,query) vars. E.g. A,B ∈ y, then consider
p(X|E ∧ (A ∧B)/(A ∧ ¬B)/(¬A ∧B)/(¬A ∧ ¬B)).

12.Variable Elimination (VE) is more efficient than enu-
meration. Factor is function on a set of vars, or its scope,
then p(X|Y,Z) is a factor f0 with scope (X,Y, Z). Such
factors can be expressed as arrays if (co)domain positive,
finite; values ordered, unique (truth table but with prob-
abilities).

13.Conditioning on observed (e.g. P (X|Y, Z)) vars, define
a new factor (e.g. P (X|Y, Z=t)) with new scope being
(X,Y), since Z is already known. Keep decreasing factor
scope until single probability.

14. If two factors share a scope variable, multiply them to
produce new factor with scope of the union of the two:
f0(X,Y)× f1(Y,Z) = f2(X,Y, Z), like left join in SQL.

15. Can eliminate (sum out) var (e.g. Y) by adding each
possible val res f1(X,Z)=f0(X,Y=t, Z) + f0(X,Y=f, Z)

16. Algorithm for solving a BBN query: 1. construct a factor
for each cond. prob condition, 2. eliminate each non-query
var (if observed, set its val to observed val of each factor
where it appears, else sum out), and 3. multipy remaining
factors, normalise. Even if factors have same scope, their
values are diff as they’re constructed using diff evidence.

17.Expected utility (EU): given set of outcomes {Oi} of
action A, evidence E and utility function U(Oi|A) assigns
measure of desirability to each Oi. Assuming PD P (Oi|A):

EU(a) =
∑
i

P (o|a)×U(o), or EU(A|E) =
∑
i

P (Oi|A,E)×U(Oi|A)

18. Consider outcomes σ1, σ2, then if σ1(⪰ / ∼ / ≻)σ2 then
σ1 is weakly preferred/indifferent/strictly preferred to σ2.
These relations are complete and transitive.

19.Decision trees ◦ have chance nodes (rand vars) with
edges being their probability (expected val of util assoc
with outcomes); and decision nodes □, representing de-
cisions to make, edges being mutually exclusive exhaustive
actions (max EU of all alternatives).

20.Normative theory: agent wants to maximise EU. Hu-
mans don’t think that far ahead, so only consider value in
current context (how much will I gain right now), called
prospect theory - given risk tolerance R, have exponen-
tial utility function UR(x) = 1− e−x/R.

21. For non-numerical outcomes, assign 0/1 to worst/best
outcome, otherwise p · U(¬X) + (1− p) · U(X).

22. Decision trees grow exponentially, probs sometimes un-
available, so use influence diagrams (ID). Have ob-
served/unobserved chance •/◦, decision □, utility ⋄ nodes.
•→◦: probabilistic dependency (chance child on parent)

◦→□: information link (decision observes chance)

□→◦: probabilistic dependency (chance child on decision)

□→□: decision ordering (parent ≺ child)

•→⋄, □→⋄: deterministic utility dependency

Chance nodes satisfy Markov condition. IDs are BBNs
with utility and ordered decision nodes.

23. ID with single □: add all evidence, for each action value
in □: set □ to that value, calculate posterior probs of nodes
∈ PA□, calculate and return single max EU of the actions.

24. Information link ◦ → □ indicates that chance must be
known before a corresponding decision is made. Used to
calculate what decision to make given ◦ vals, calculate
same as (23) but instead of returning max, return an ac-
tion → EU decision table.

25. Test-Action ID: eval test □ first, include the cost as sepa-
rate ⋄, if □ is test, collect evidence. To evaluate, evaluate
Decision network with any avaliable evidence, enter test
decision as evidence (if not ”yes”, use ”unknown”), and
eval action decision.

12

Reinforcement Learning

1. Have prior knowledge: possible world states or actions,
observations: curr world state, immediate feedback and
goal : act to max accumulated reward. At any time agent
must either explore, gaining knowledge or exploit it.

2. RL Model comprises state transition P (s′|a, s) (proba-
bility of getting to state s′ if taken action a in state s) and
reward R(s, a, s′) (expected reward of transitioning from
s to s′ using a) functions, then solve using Markov Deci-
sion Process (MDP), or learn Q∗(s, a) guiding action.

3. Horizon: agents carry out actions forever (infinite), until
stopping criteria (indefinite), or in (finite) num steps.

4. Assume flat, explicit states, indef/infinite stage, fully ob-
servable, stochastic, complex preferences, single agent,
knowledge given, perfect rationality.

5. Given seq of rewards r1, r2, ..., can find total (V=
∑∞

i=1 ri)
or average (V=limn→∞(r1 + .. + rn)/n) rewards, but
unreliable if seq is infinite, so use discounted return
V = r1 + γr2 + γ2r3 + .. with discount factor 0 ≤ γ ≤ 1.

6. Since Vt = rt + γVt+1 then min reward
1−γ ≤ Vt ≤ max reward

1−γ ,
this removes the motivation to go forever. Can approxi-
mate the value of V with: V = γkVk+1+(r1+...+γk−1rk).

7. Markovian assumption: no information about the past
is relevant to the future. Si is state and Ai is action at time
i, then P (St+1|S0, A0, .., St, At)=P (St+1|St, At). Notably,
P (s′|s, a) is prob that agent will be in state s′ immediately
after doing action a in state s.

8. MDP is a Markov chain with set A of actions, S states,
P (St+1|St, At) dynamics, R(St, At, St+1) reward at time t.

Fully-observable MDP observes St when deciding on At; in
Partially observable POMDP agent has noisy sensor
of state, needs to remember its sensing and acting history.

9. Stationary policy (strategy) is function π : S → A spec-
ifying what action agent will do given a state. Optimal
policy is one with max expected discounted reward, always
exists for fully-observ MDP. Optimal policy is denoted ∗.

10.Qπ(s, a) is expected value of doing action a in state s
then following policy π. V π(s) is expected value of follow-
ing policy π in state s. Def mutually recursively:

Q(π/∗)(s, a) =
∑
s′

P (s′|a, s)(r(s, a, s′) + γV (π/∗)(s′))

V π(s) = Q(s, π(s)) V ∗(s) = max
a

Q(s, a)

π∗(s) = argmaxaQ(s, a)

11.Value iteration (VI): let Vk, Qk be k-step lookahead
value and Q functions. Set V0 arbitrarily, compute
Qi+1, Vi+1 from Vi. Converges exponentially fast in k to

optimal value func, error reduces proportionally to γk

1−γ .

12. Better to individually update value functions for each
state, optimal if gets stuck: (asynchronous VI, AVI).
Repeat forever: Select state s and action a, then compute:

V [s]← max
a

∑
a′

P (s′|s, a)(R(s, a, s′) + γV [s′]) or

Q[s, a]←
∑
s′

P (s′|s, a)(R(s, a, s′) + γmax
a′

Q[s′, a′])

13.Deterministic Reinforcement learning: flat, explicit
states, indef/infinite stage, fully observable, determinis-
tic, complex preferences, single agent, knowledge learned,
perfect rationality.

Experimental AVI for Deterministic RL

Q[S,A], s ← arbitrary init, observe curr state s
while true:
select, perform action a, observe reward r, state s′

Q[s,a] s ← r+γmaxa′Q[s',a']; s ← s'

14.Nondeterministic RL: same, but stochastic. For seq of
values v1, v2, .. whave running esitmate of average of first
k vals: Ak = v1+...+vk

k = k−1
k Ak−1 +

1
kvk, let αk = 1

k , then
Ak = Ak−1 + αk(vk − Ak−1). These are called temporal
differences (TD). For fixed α, they converge to average
if
∑∞

k=1 αk =∞ and
∑∞

k=1 α
2
k <∞.

15.Q-learning: storeQ[State,Action] and update same as in
AVI, but using experience (empirical probs and rewards)

Q-learning

Q[S,A], s ← arbitrary init, observe curr state
while true: ⟨s, a, r, s′⟩
select, perform action a, observe reward r, state s′

Q[s,a] += α(r + γmaxa′ Q[s′, a′]−Q[s, a]) s ← s'

For state-action-reward-newState tuple ⟨s, a, r, s′⟩:

Q[s, a] = Q[s, a] + α(r + γmax
a′

Q[s′, a′]−Q[s, a])

Q[s, a] = (1− α)Q[s, a] + α(r + γmax
a′

Q[s′, a′])

13

16. Q-learning always converges to an optimal policy as long
as it tries each action in each state enough. Exploit: do a
in state s to max Q[s, a], explore: choose another action.

17. Exploration ϵ-greedy strategy: choose random action
with probability ϵ and choose best action with 1− ϵ. Soft-
max action selection: in state s, choose a with probability

Softmax ϵ =
eQ[s,a]÷τ∑
a e

Q[s,a]÷τ

where τ > 0 is the temperature: good actions are chosen
more often than bad ones, τ defines how much difference
in Q-values maps to difference in probability (”optimism
in face of uncertainty”). Initialise Q to values encourag-
ing exploration, take into account avg, variance (”upper
confidence bounds”).

18.On-policy learning learns value of policy being followed,
unlike off-policy Q-learning which learns value of an op-
timal policy no matter what it does. Use ⟨s, a, r, s′, a′⟩.

SARSA: On-policy Q-learning

Q[S,A], s ← arbitrary init, observe curr state
while true: ⟨s, a, r, s′, a′⟩
select, perform action a, observe reward r, state s′

a' ← select using policy based on Q
Q[s,a] ← Q[s, a] + α(r + γQ[s′, a′]−Q[s, a])
s, ← s'; a ← a'

19.Model-based methods (e.g., value iteration or policy it-
eration) build or use an explicit model of the environ-
ment’s transition probabilities and reward function to plan
ahead, whereas model-free methods (e.g., Q-learning or
SARSA) learn value functions directly from sampled ex-
perience without ever estimating that model.

Multiagent Systems

1. Agents can be cooperative: share util function, com-
petitive (zero-sum), or inbetween; Select actions au-
tonomously or self-interested - maximising their own util.

2. Use game theory. Perfect Information Game: agents
act sequentially and can observe state before acting. Each
agent can use DP or search, MDP or RL with separate Q
functions, maximing for themselves.

3. Normal(strategic) form of a game includes a finite set
I={1, ..n} of agents each with a set of actions Ai∈I . An
action profile σ=⟨a1, ..an⟩ s.t. agent i takes action ai, and
utility function u(σ, i) giving EU for i when all agents fol-
low σ. Join actions of all agents σ produces an outcome.

4. Can use payoff matrix defining possible game decision
states, some games need strategy or controllers.

5. Extensive form of a game with perfect-info game is
a decision(game) tree with state nodes and action arcs.
Each node labeled with agent(nature), has PD over its
children; leaves are outcomes with utility for each agent.

6. Partially-observable(imperfect-information) game:
need not know the state of world to choose an action (e.g.
simultaneous action games). Extensive form of the game
uses information sets of nodes controlled by same agent
with same undistinguishable available actions. Strategy
chooses one action per info set.

7. Multiagent decision network comprises decision nodes
labeled with agent that completes them, utility node for
each agent and parents specifying available info.

8. Reasoning with imperfect info: choose actions stochasti-
cally, when can’t move away from a decision, it has reached
an equilibrium. Strategy is a PD over actions of the
agent. In stochastic strategy no probabilities are 1.

9. Strategy profile σi is assignment of strategy to each
agent i. Also σ−i is set of strategies of other agents, so
σ = σiσ−i. Utility for i of node n controlled by nature is
expected value for i of its children c: ui(n) =

∑
c P (c)ui(c)

where P (c) is prob that nature will choose c.

10.Nash Equilibrium σi is best response to σ−i if ∀ other
strategies σ′

i agent i: utility(σiσ−i, i) ≥ utility(σ′
iσ−i, i).

No player can, by themselves, switch to another strategy
and improve their expected payoff.

11. Nash equilibrium doesn’t guarantee maximum payoff
to each agent. Compute it by eliminating dominated
strategies, find which actions have non-zero probs (sup-
port set), determine prob for actions in the support set.

12. Strategy si strictly dominates if utility(siσ−i, i) >
utility(s2σ−i, i). When actions a1, ..ak have same value
for agent, randomise the picking. If all probs ∈ (0, 1),
then Nash equilibrium.

13. Each agent maintains PD over actions P [A] and esti-
mate of value of doing A given σ−i - Q[A]. Repeat: se-
lect and do action a using P , observe payoff. Q[a] ←
Q[a] +α(payoff−Q[a]). Increment prob of best action by
δ, decrement probs of other actions.

14

Revisited:

Partial-Order Planner (POP)

def POP(initial,goal,ops) → plan: # ops=operators
plan ← Make-Minimal-Plan(initial, goal)
while not Solution(plan):
Sneed, c ← Select-Subgoal(plan)
Choose-Operator(plan,ops,Sneed,c)
Resolve-Threats(plan)

return plan
def Choose-Operator(plan,ops,Sneed,c):
step Sadd ← ops or Steps(plan) with effect c
if not Sadd: return fail

add causal link Sadd
c→ Sneed to Links(plan)

add ordering Sadd ≺ Sneed to Orderings(plan)
if Sadd newly added step from ops:
add Sadd to Steps(plan)
add Start ≺ Sadd ≺ Finish to Orderings(plan)

def Resolve-Threats(plan):
∀ Sthreat threatening link Si

c→ Sj ∈ Links(plan):
Demotion: add Sthreat ≺ Sj to Orderings(plan) or
Promotion: add Sj ≺ Sthreat to Orderings(plan)

if not Consistent(plan): fail

15

