
Lecture Notes
CS254 - Algorithmic Graph Theory

General

1. V : Vertices(Nodes), E: Edges(Pairs of Nodes)
2. Pairs of nodes comprising relation E are called edges
3. Two nodes connected by an edge are called adjacent
4. G = (V,E): Graph with sets of nodes V and edges E
5. Graph (G) ”on” V is an Irreflexive, symmeric relation

defined by E = R⇀ : V ↔ V (V is any finite set)
6. Empty graph has no edges: (V,∅)
7. Complete graph K(n) contains all possible edges:

K(V ) = (V,E), where E = {(u, v) ∈ V 2|u ̸= v}
8. Graph G is bipartite or two-coloured if set of nodes

can be partitioned into 2 disjoint subsets V = V1 ∪ V2

s.t. every edge in E connects 2 nodes from diff. subsets

V1, V2 are colour classes
9. K(n) can be read as: ’Any graph isomorphic to K(Nn)’
10. K(V1, V2) = (V1 ∪ V2, (V1 × V2) ∪ (V2 × V1)) is called

a complete bipartite graph. K(m ∈ N, n ∈ N) - any
graph isomorphic to K(H,W ) with m houses, n wells

11. A graph with k colour classes is called k-partite
12. Complete graph has n(n−1)

2
edges.

13. Connected graph stays conn. when adding edges
14. Acyclic graph stays acyclic when removing edges
15. Trees are maximal among acyclic graphs
——————————————————————————————————————————
1. Eulerian cycle visits each edge only once.
2. Hamiltonian cycle visits each node only once.
3. V ̸= ∅, |V | finite.
4. Directed graph: ordered pairs: e = (v, w) ∈ E
5. Undirected: unordered e = {v, w} ∈ E
6. Self-loops: e = (v, v)
7. A graph is simple if no loops and multiple edges.
8. edges(e)=v(source) w(destination in dir.)G ∈ E
9. Multiplicity : number of edges between 2 nodes.
10. Adjacent nodes: Nodes, connected by an edge.
11. Incident nodes: Nodes that an edge connects.
12. Self-loops count twice in Vertex degree

13. in-deg(v)
def
= num. edges where v is destination.

14. out-deg(v)
def
= num. edges where v is source.

15. v → w : vw ∈ E
16. v →∗ w : ∃v ↬ w or w is reachable from v.
17. Graph G is Eulerian if it has an Eulerian cycle.
18. G′ is a subgraph of G(G′ ⊆ G) if V ′ ⊆ V,E ′ ⊆ E
19. G′ spanning subgraph of G(G′ ⊑ G) if V ′ = V,E′ ⊆ E

20. R⊆, R⊑ : G(V ) ↔ G(V ) are part. orders on G(V )
21. Tree: connected, acyclic graph.
22. Forest: acyclic graph (not necessarily connected)
23. If deg(v) = 1 in a tree, then v is a leaf

Graph Connectivity

1. Walk (of len. k) is a sequence (u, u1, ....uk−1, v) s.t.

every two consecutive nodes in the sequence are connected

by an edge:(u ⇀ u1) ∧ ... ∧ (uk−1 ⇀ v)

2. u↬ v “nodes u and v are connected by a walk”
3. Tour is a walk that returns to the starting node
4. Nodes u, v in a graph are connected, if ∃u↬ v.
5. A graph is connected if all (u, v) are connected.
6. Connectivity is equivalence relation on the set of all
nodes in a graph: R↬ : V ↔ V
7. Equivalence classes of R↬ are ”connected compo-
nents” of graph G. A graph is connected iff it has only
1 connected component.
8. A walk where all E are distinct is a Path: u⇝ v

u = u0 ⇀ ... ⇀ uk ⇀ v ∀i, j ∈ Nk+1|ui ̸= uj

9. Cycle is a tour with no edges repeated.
10. A graph without cycles is called acyclic
11. R⇝ : V ↔ V is equivalence relation
12. deg(v) = |{u ∈ V |v ⇀ u} (num adjacent nodes)
13. Simple Path is a walk that repeats no vertices.
14. Simple Cycle: tour with no vertices repeated ex-
cept v0 = vn
15. A graph is planar, if can be embedded in the plane s.t.

the lines representing different edges do not cross.

16. Usually want to identify graphs which are
“the same up to a renaming of nodes”

17. Graphs G1 = (V1, E1), G2 = (V2, E2) are isomorphic
if bijective func. f : V1 ↔ V2, preserving edges exists:

∀u, v ∈ V1|(u, v) ∈ E1 ≡ (f(u), f(v)) ∈ E2, where
bijective f is an isomorphism between G1 and G2

18. Subdivision of a graph G = (V,E): choose an
edge {u, v} ∈ E, remove it, add a new vertex x /∈ V ,
and insert the edges {u, x} and {x, v}.
19. Undirected: {x, y} ∈ E, Directed: (x, y) ∈ E.
20. Independent Set X ⊆ V if ∀x, y ∈ X : {x, y} /∈ E.

Theorems

1. ∀u, v ∈ V |∃u⇝ v iff ∃u↬ v
2. G has Euler tour iff: G connected, ∀v ∈ V : |v| even
(Euler, Hierholzer)
3. Handshaking Lemma:

∑
v∈V deg(v) = 2 · |E|

4. Let G = (V,E) be a tree. Then |V | = |E|+ 1
5. Every tree with at least one edge has a leaf.
6. Partial order R⊑ on set of all asyclic graphs on finite

set V . Graph G = (V,E) is maximal iff it’s a tree.

7. Graph is planar iff it has no subgraph isomorphic to

a graph obtained from K(5) or K(3, 3) by a sequence of

subdivisions.
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Intro

1. For graph G = (V,E): Order n = |V |, Size m = |E|.

2. Deg(v) = in-deg(v) + out-deg(v).
∑

v∈V deg(v) = 2|E|.
∆ denotes the maximum degree d(v) of a node in v ∈ V .

3. Subgraph G′=(V ′, E′) of G=(V,E) if V ′ ⊆ V ∧E′ ⊆ E.
Spanning subgraph if V ′ = V (share all vertices).
Induced subgraph if ∀ej ∈ E incident on v′i ∈ V ′ : e ∈
E′ (some nodes but all original edges connecting them).

4. Multigraph (pseudograph) allows multiple edges be-
tween two vertices and self-loops, so E becomes a mul-
tiset of edges, each being a multiset of vertices over V .
Otherwise the graph is simple.

5. Forest: undirected graph without a cycle. Tree is a
connected forest. Spanning tree if the spanning sub-
graph is a tree. DAG is a directed asyclic graph.

6.
Graph directed: 0 ≤ m ≤ 2 ·

(
n
2

)
; Forest: m ≤ n− 1;

Simple undirected: 0 ≤ m ≤
(
n
2

)
; DAG: m ≤

(
n
2

)
7. Incident edge: touches a vertex.

Endpoints u, v of e = (u, v) ∈ E
Adjacent vertices/edges: share an edge/vertex.
Directed edge: Goes from tail to head (u → v).
Consecutive edges: (u, x), (x, v) (tail1 = head2)
Consecutive nodes: Connected as tail → head.

8. Path P = v1, .., vk is a v1 ⇝ vk or (v1, vk)-path.
Undirected G connected if ∀u, v ∈ V : ∃(u⇝ v) path.
Directed G connected if ∀u, v ∈ V : ∃(u⇝ v)∨(v ⇝ u),
strongly connected if ∀u, v ∈ V : ∃(u⇝ v) ∧ (v ⇝ u)

9.

f ∈ O(g) iff

{
∀n ∈ N.∃c > 0 : f(n) ≤ c · g(n)
lim
n→∞

f(n)
g(n) < +∞

f ∈ Θ(g) iff f ∈ O(g) ∧ g ∈ O(f)
f ∈ Ω(g) iff g ∈ O(f)

f ∈ ω(g) iff lim
n→∞

f(n)
g(n) = ∞

10. Can represent a graph using

• Edge list: directed/undirected depends on interpre-
tation. Storage O(m), useful for I/O, but not many
other operations. Computing d(v) takes O(m).
• Adjacency list (default): takes O(n + m) storage,
but checking if (u, v) ∈ E takes Θ(min{d(v), d(u)}).
• Adjacency matrix : Storage O(n2), wasteful since
most graphs are sparse with m ≪ n2. Find 1 neighbour
in O(1), all in Θ(n), most other operations in Ω(n2).
• Implicit representation: e.g. edge exists from x to
y if y is in the ball with radius r(x) around x.

Bipartiteness

1. Undirected G = (V,E) is bipartite if V = V1 ∪ V2 with
one endpoint per edge: ∀e ∈ E : |e ∩ Vi| = 1 for i = 1, 2.
Directed bipartite if V=V1∪V2, E ⊆ (V1×V2)∪(V2×V1).

2. Corollary: graph is bipartite iff it has no odd-length
cycle. Bipartite graph has 2 independent vertex sets.

3. Let ∼ denote connectedness-relation on G: u ∼ v ≡
u connected to v ∈ V . Reflexive, symmetric, transitive.
Its equivalence classes are G’s connected components

Simple explore

def Simple-Explore(G,s):
R = {s}; # BFS if R is queue, DFS if R is stack
while ∃{u, v} ∈ E s.t. u ∈ R ∧ v /∈ R:
R = R ∪ {v};

resulting R contains connected component of G which is
a tree with shortest (s, v)-path from root s to all v ∈ V
if BFS (R is a queue q, u = q[0]), DFS if R is a stack.

4. Lemma: if G bipartite, then ∄{u, v} edge with u, v on
the same level i in BFS-tree because otherwise the low-
est common ancestor Li−t, t layers above Li produces a
cycle of length 2t+ 1, which is odd, so contradiction.

Bipartiteness BFS O(n+m)

def TestBipartiteness(G):
for each unvisited node s in G:
BFS(s), assigning levels; #connected component
if ∃{u, v} ∈ E with level(u) = level(v):
return false;

return true;

BFS

1. BFS Property 1: edges not within BFS tree can only
connect successive layers or vertices on the same layer.
BFS property 2: BFS tree contains shortest (s, v)-
path for every vertex v reachable from s.

2. BFS helps find (strongly) connected components, test bi-
partiteness and sort topologically, all running in O(1) +∑

u∈V (d(u) +O(1)) = O(n+m) time if adjacency list.

3. Adj list: go through all V in O(n), for vertex v go
through neighbours in O(d(v)), but checking if (u, v) ∈
E takes Θ(min(d(u), d(v))).

4. Sink is a vertex u ∈ V if degin(u) = n − 1,degout = 0.
No simple directed graph has more than one sink. If
(u, v) ∈ E then u isn’t a sink, if false, then v isn’t one.
Repeat n − 1 times until 1 left, to check if it’s a sink,
taking O(3(n− 1)) with adjacency matrix.

5. Theorem: any algorithm determining if graph is bi-
partite that has input as undirected graph G = (V,E)
represented as an n × n adj matrix has Ω(n2) runtime.
Proof : consider ALG on a star G0 = (V,E0) with
V = {1, 2, ..n}, E0 = {{1, i} : 2 ≤ i ≤ n}. Suppose
checked <

(
n−1
2

)
queries, then there are some entries

ALG hasn’t visited - editing those constructs G∗ s.t. G
and G∗ are indistinguishable by ALG, so both return
same result, but shouldn’t, hence must visit n2 items.
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DFS numbering

1. Find connected components by running DFS or BFS
from vertex s ∈ V , removing that connected component,
repeat until V = ∅. If component C has nC vertices and
mC edges, either take O(nc+mc) and O(n+m) in total.

2. DFS number N [v]: distinct DFS finish time at v ∈ V ,
if u ancestor of v (forward edge) or not related (cross
edge) N [u] > N [v], else backward edge: N [u] < N [v].

DFS numbering O(n+m)

c = 0; ∀v ∈ V : N[v] = 0; # counter, dfs numbering
while ∃v ∈ V : N[v] = 0 do DFS(G,v);
DFS(G,x): # recursive DFS algorithm
visit x;
for x,y∈ E do
if N[y] = 0 then DFS(G,y);
T = T ∪ {{x,y}}; # DFS tree edges (global)

N[x] = ++c; # backtracking increments dfs number

Maintain non-active, active & finished nodes.

3. DFS-tree in 1 execution of the recursion. DFS-forest:
sum of disjoint trees. Forward edge from node to its
descendant. Backward edge from node to its ancestor.
Cross edge between non-ancestor/descendant edges.

4. DFS trees only have forward/backward, no cross edges.

Directed Cycles, Topological Sort

1. Asyclic graph with no parallel edges has 0 ≤ m ≤ n− 1
edges if undirected, and 0 ≤ m ≤

(
n
2

)
if directed.

2. Directed Acyclic Graph (DAG) is a directed graph
G = (V,E) with no cycles.

3. Topological sort is map ϕ : V → {1, .., n} s.t. ∀(u, v) ∈
E : ϕ(u) < ϕ(v) - visit order in digraph. In DAG, DFS
numbering would produce N [u] < N [v] (since no back-
wards edges), so its reverse is topologically sorted.

4. Theorem: digraph has topological sort iff it’s a DAG.
Proof : (⇒) suppose G has topological sort, FT-
SOC assume G has cycle C={x0, ..xk}. wlog let
x0=mini∈{1,..k}{ϕ(xi)}, or the vertex of C with small-
est number. Then (xk, x0) ∈ E but ϕ(xk) ≥ ϕ(x0)
(⇐) Suppose G is DAG, then ∃ a sink, number it n and
delete from G, recursively number the rest. Find a sink
in O(n), decrement out-deg of each node directed at v,
so for each node u takes O(out-deg(u)), overall O(n+m).

5. Reminder: if v ∈ V is a sink, then all non-sink u ∈ V
have to have an edge (u, v) ∈ E. Can have ≤ 1 sink.

6. DAG cycle detection: compute DFS numbering N on
digraph G, set ϕ(v) = n−N [v]+1. For every (u, v) ∈ E
check if ϕ(u) < ϕ(v), if some edge fails then G is not
DAG, else it is DAG, hence has no cycles.

Connected Components

1. Reminder: for undirected graph G = (V,E), vertices
u, v ∈ V are connected if ∃ path u ⇝ v and strongly
connected if also ∃ path v ⇝ u.

2. Connectedness relation an equivalence relation - its
equivalence classes are (strongly) connected compo-
nents (S)CC of G. Can find SCC/CCs with BFS/DFS
in O(n+m) time.

3. Can use SCC to design efficient algorithms. Let G =
(V,E) be digraph. Find SCCs of G, contract each SCC
into a single supervertex. Becomes meta graph G∗

once all are contracted. Claim: contracted G∗ is asyclic
Proof : FTSOC suppose G∗ not asyclic, then ∃ cycle
x0, ..xk, x0 s.t. each xi is a SCC. But then all vertices in
any xi, xj are strongly connected: use path xi, xi+1, ..xj
in one direction, and path xj , xj+1, ..x0, x1, ..xj in other.
Contradiction - SCCs are not distinct, so G∗ is DAG.

4. SCC algorithm recipe: 1. Find SCCs, contract each.
2. topologically sort contracted components. 3. Use DP
on DAGs to solve the problem.

5. Observation: if we start DFS at any x ∈ V belonging
to sink of G∗ meta graph, then we explore the whole
SCC of x, but no other super vertex.

6. Lemma: let C1, C2 be two SCCs of G with (C1, C2)
edge in meta graph: maxu∈C1 N(u) > maxv∈C2 N(v) as
(u, v) ∈ E, u ∈ C1, v ∈ C2, so (u, v) is a cross edge, so
N(u) > N(v).
Corollary: vertex with maximal DFS number is con-
tained in source vertex of meta-graph.

7. Reverse graph: let G′ = (V,E′) be reverse graph of
G = (V,E) with all edges reversed. Then meta graph of
G′ is the reverse of meta graph G∗ of G, so same SCCs.
Corollary: if run DFS on G′, then vertex with maximal
DFS number is contained in sink SCC of G∗

8. Kosaraju’s Algorithm: find SCCs via DFS. 1. Com-
pute reverse graph G′ of G. 2. Run DFS on G′ and
compute finish number N(v) for every vertex v ∈ V . 3.
Run DFS on G where restarting is always done at v with
max-value of N(v) among yet unvisited vertices.

9. Theorem: Kosaraju’s algorithm finds all SCCs of a di-
graph in time O(n+m).

Biconnected components and DFS

1. Undir G is biconnected if G\{v} is connected ∀v ∈ V .

2. Cut-vertex or articulation point is vertex whose re-
moval disconnects the graph.

3. Biconnected component of G is its maximal bicon-
nected subgraph.
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4. Graph is k-vertex connected if removal of any k − 1
vertices leaves remaining graph connected.

5. Let ∼ be equivalence relation on E s.t. e1 ∼ e2 iff
e1, e2 are contained in a simple cycle in G or e1 = e2.
It’s reflexive, symmetric and transitive.

6. Transitivity(∼):if ∃ two simple cycles containing e1, e2,
and e2, e3 respectively, then ∃ one containing e1, e3.
Proof: find simple cycle as follows. Let e2 together with
e1 = (u0, u1), e3 = (v0, v1) be contained within simple
cycles C1 = (u0, u1, ..uk) and C2 = (v0, v1, ..vr), respec-
tively. Let s ∈ {1, ..k−1} and l ∈ {2, ..k} be smallest and
largest index s.t. us, ul ∈ C2. Assume their indices in C2

are s′ and l′, which must exist, be different; if s′ < l′ then
sequence u0, ..us=vs′ , vs′−1, ..v0, vr, ..vl′+1, vl′=ul, ..uk) is
a simple cycle, similarly for l′ < s′

7. If root node has at least two children then it will always
be an articulation point, otherwise isn’t. Leaves are
never articulation points. Internal node is articulation
point when none of its descendants have a back edge to
one of its proper ancestors.

8. Low-point of node v in DFS-tree is lowest level (closest
to the root) among the neighbours of (all) nodes in the
subtree Tv rooted at v (subgraph starting at v).

9. Articulation Point search: compute DFS tree. Com-
pute level and low-point for each node. ∀ internal nodes
check if low-point of one of its children is ≥ v if so, it’s
articulation, else not. Can do using one DFS traversal.

Articulation point search algorithmO(n+m)

def Articulation-Points(G,x,l):
x.level = l; x.visited = true;
∀ {x,y} ∈ E do: # visit children
if y unvisited: Articulatoin-points(G,y,l+1);

x.low_point = x.level; x.articulation = false;
∀ {x,y} ∈ E do:
if y.level = l+1: # y is child of x
x.low_point = min{y.low_point, x.low_point}
if y.low_point ≥ x.level:
x.articulation = true;

else: x.low_point = min{y.level,x.low_point};

10.Theorem: can find all articulation points and all bi-
connected components in O(n+m) time.

11.
Bipartiteness DFS O(n+m)

def TestBipartiteness(G):
compute DFS-tree, compute level ∀u ∈ V
if ∃{u,v}∈E with both u,v on odd/even level:
return false

else: return true

12.Claim: G is bipartite iff every edge in G is between a
vertex on odd level and vertex on even level of DFS tree.

Efficient Tree & DAG Algorithms

1. Undirected graphs efficient if trees or forests, with top-
down or bottom-up in O(n) time. Directed graphs effi-
cient if DAG, with topological sort + DP.

2. Longest (simple) path is NP-hard, but O(n) for trees
and O(n+m) for DAGs.

3. Longest simple path in forest: run DFS from root r,
then for each vertex u ∈ V : Let LPI(u) = longest path
fully in subtree rooted at u, LPT(u)=longest path from
u to any descendant. Then in O(n) time return LPI(r):

LPI(u) = max

( max
1≤i≤s

LPI(vi),

2 + max
1≤i<j≤s

(
LPT(vi) + LPT(vj)

) )
LPT(u) = 1 + max

1≤i≤s
LPT(vi)

4. Longest simple path in DAG takes O(n+m) time:

Longest Simple Path in DAG O(n+m)

1. Topologically sort G
2. for i in range(n, 1): LP(i) = 0;

for each edge (i,j)∈ E: # edge relaxation
if 1+LP(j)>LP(i): LP(i)=1+LP(j)

3. return largest LP(i)

Aspect Forest (tree) DAG

Traversal single DFS+DP topo-sort,edge relax.
State per node LPI,LPT LP
Time O(n) O(n+m)

Graph Colouring

1. Proper vertex-colouring of G with set of colours C is
a function c : V → C s.t. c(u) ̸= c(v) for all (u, v) ∈ E.
If |C| = k, then called (proper) k-colouring.

2. Chromatic number X (G) of graph G is the smallest
k s.t. there exists a k-colouring of G.

3. Lemmas: X (G)=2 if G bipartite; X (T )=2 if T is tree;
X (C)=3 for odd cycle C and X (Kn)=n complete graph

4. Lemma : If graph G has subgraph G′: X (G) ≥ X (G′)

5. Clique-number ω(G) is cardinality of largest subset
K ⊆ V s.t. G[K] is a complete graph, where G[K] is
subgraph of G induced by vertex set K.

6. Lemma: if graph contains k-clique Kk: X (G) ≥ ω(G).

7. Lemma: GreedyColours colours G with ≤ ∆(G) + 1
colours, where ∆(G) denotes maximum degree of G.

Greedy Colouring

def GreedyColouring(G): initialise i = 1;
while i≤ n: # c(n) is colour number of node n
c(vi) = minj<i{N \ {c(vj) : {vi, vj} ∈ E}}
i += 1

8. Theorem: X (G) ≤ ∆(G) + 1 for any graph G.
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Planar Graphs

1. Graph G is planar if it can be drawn in plane R2 with
every vertex v drawn as a point f(v) ∈ R2 and every
(u, v) edge as continuous curve between f(u) and f(v)
s.t. no two edges intersect except possibly, end points.

2. Plane graph or planar embedding is a planar draw-
ing of a planar graph. Faces of this drawing are con-
nected components of R2 after we delete drawing’s ver-
tices, edges. Note: square has 2 faces: inside, outside.

3. Euler’s Formula: Let G = (V,E) be a connected pla-
nar graph. Let F be the set of faces of G’s planar em-
bedding, and ccG is # connected components in G:

|V |+ |F | =
{

2 + |E| if G connected
1 + ccG + |E| if G not connected

Proof by induction: Base case: if G is acyclic, then
|F |=1, so theorem holds since G is tree and |E| = |V |−1.
Inductive step: assume G has a cycle C, let e ∈ C,
then delete e from G, resulting in G∗. Now G∗ has |V |
vertices, |E| − 1 edges and |F | − 1 faces, so

|V |+ (|F | − 1) = (|E|+ 1) ⇒ |V |+ |F | = 2 + |E|
(Can keep removing cycles until base case reached.)

4. So, every tree, cycle and K4 is planar, but K5 or K3,3 is
not. Note: |F | is independent of planar embedding.

5. Theorem: for any simple connected planar graph G
with n > 2 it holds that |E| ≤ 3|V | − 6.

Proof : every face has ≥ 3 edges bounding it. Every
edge bounds ≤ 2 faces, so 2|E| ≥ 3|F |, euler’s formula:

|E| = |V |+|F |−2 ⇒ 3|E| = 3|V |+3|F |−6 ≤ 3|V |+2|E|−6

6. Corollary: K5 is not planar.
Proof : K5 has 5 vertices, each vertex has 4 neigh-
bours, so n = 5,m = 10, must hold: m ≤ 3n − 6, but
10 ≥ 3 · 5− 6, contradiction.

7. Lemma: every simple planar graph has vertex of degree
at most 5. Proof by contradiction: FTSOC suppose
∀v ∈ V :d(v)> 5, then 2|E|=

∑
u∈V d(u) ≥

∑
u∈V 6 = 6|V |

but ∀n > 2: |E| ≤ 3|V | − 6, contradiction.

8. Corollary: Every simple planar graph is 6-colourable.
Proof : Base case: trivially holds for n ≤ 6. In O(n):
inductive step: find vertex v with d(v) ≤ 5. Recur-
sively colour G − v using 6 colours. Now return v and
choose out of 6−d(v) = 1 remaining colours, assign to v
as graph remains simple planar upon vertex deletion.

9. Lemma: Every simple planar graph is 5-colourable .
Proof by induction: Base case: if G has vertex v of
degree d(v) ≤ 4, do induction same as 5-colourability.
Otherwise ∃v s.t. d(v)=5, remove v from G and colour
obtained graph, bring v back. If among 5 neighbours,
not all 5 colours are used - assign missing colour to v.

Otherwise wlog v has 5 neighbours u1, ..u5 meaning
vertex ui has colour i. Try to replace u1’s colour with
colour 3. Consider subgraph H of G induced by vertices
with colours 1, 3. If u1 is disconected from u3 in H, then
consider component of H containing u1, swap colours
1, 3 in that component and colour v with colour 3.
Otherwise take u1 ⇝ u3 path π in H. If add edges
{v, u1}, {v, u3} to π then obtain Jordan curve separat-
ing u2 from u4. So graph induced by vertices coloured
2, 4 can’t have u2 and u4 connected, so in that graph’s
component containing u4 swap colours 2,4. Colour v
with colour 4, as neighbours only have 4 colours.

10.Theorem: Every simple planar graph is 4-colourable .

11.Dual graphG∗ = (V ∗, E∗) of planar graphG = (V,E):
each vertex u ∈ V ∗ corresponds to a face in G. Two ver-
tices in G∗ are connected by an edge if corresponding
faces in G have boundary edge in common. G∗ is pla-
nar, |V ∗| = |F |, |E∗| = |E|, |F ∗ = |V |

12.Theorem: any map in a plane can be coloured us-
ing four colours s.t. regions sharing a common bound-
ary (other than single point) do not share same colour.
Proof : consider duals of planar graphs.

13.Kuratowski’s Theorem: A graph G is planar iff it
has no minor isomorphic to K5 or K3,3- if it’s impossible
to subdivide edges of either and add edges and vertices
to obtain G.

MST

1. Graph S=(VS , ES) is spanning subgraph of G=(V,E)
iff it covers all its vertices VS = V and uses some of its
edges ES ⊆ E.

2. Spanning tree (ST) is a maximal (adding any new
edge would create a cycle) connected spanning subgraph
of G with no cycles and |V| − 1 edges.

3. Minimum Spanning Tree (MST) is ST of undirected
connected graph G with weighted edges that has the
minimum weight.

4. Meta-Algorithm: build ST edge by edge by including
a blue edge or excluding a red one until the tree is built.

Blue Rule : partition V=V1∪V2, subgraphs G1, G2 ⊆ G
vertex-induced by V1, V2 connected by uncoloured
edges, choose lightest such edge, colour it blue.

Red Rule : select any simple cycle containing no red
edges, colour the maximum weight uncoloured edge red.

MST Meta Algorithm

def Meta-Algorithm(G):
Initialise: all edges ∀e ∈ E are uncoloured
while there are uncoloured edges:

apply either blue or red rule
return tree formed by blue edges
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5. Colouring invariant: there exists a MST that contains
all blue edges and no red edges.

6. Theorem (preserving invariant): after meta algo-
rithm colours all edges, the blue edges will form a MST.
In other words, the meta algorithm is correct. Proof :

Blue rule: Let T be MST (before colouring edge e). If
e is blue, and is already in T , then the invariant holds.
If it isn’t then there must exist a path in T connecting
e’s endpoints, containing some edge e∗. Since e∗ is un-
coloured and weight w(e∗) ≥ w(e), can replace e∗ with
e preserving the MST property.

Red rule: if e is red, then if e /∈ T then the invariant
holds, otherwise deleting e in T creates subtrees V1, V2.
Since e was part of cycle when coloured red, ∃ some un-
coloured edge e∗ in that cycle with w(e∗) ≤ w(e), so
replacing e with e∗ preserves MST property.

Termination: FTSOC, assume algorithm stops while
some edges are still uncoloured, but initially blue edges
form a forest. For any uncoloured edge e: if its endpoints
are in same blue tree, red rule removes e, if in different
blue trees, applying blue rule adds e, so uncoloured edge
always allows a rule to be applied, contradiction.

7. Any MST algorithm implementing meta algorithm
framework is correct. A few such algorithms:
• Kruskal’s: O(m log n), or O(mα(n)) for int weights.

• Prim’s: O(n2), or O(m log n) with simple priority
queues, or O(m+ n log n) with Fibonacci heaps.

• Bor̊uvka’s: Suitable for parallel implementations.

• Round-robin: O(m log log n) or O(n) in planar graphs.

MST Data Structures, Union-Find

1. Union-Find data structure maintains disjoint dynamic
sets S = {s1, ..sk} supporting following three operations:
• Make-Set(x) creates new set whose only member is x.
• Union(x, y) unites disjoint sets containing x, y into a
new set that is the union of the two sets.
• Find(x) returns representative of set containing x.
Typically need O(n) Union and O(m) Find operations.

2. In union find, two vertices are in the same blue tree if
their Find returns the same representative. Blue rule:
merge two trees into one, red rule: do nothing. Each set
si contains vertices from the same blue tree.

3. Characteristic vector is the simplest implementation
of union-find, write X (i) be the representative of set con-
taining i. Basically array where index is vertex number
and value is that vertexes representative.
Make-Set(x): X (x) = x O(1) Find(x): return X (x) O(1)
Union(x, y): for i=1 to n: X (i)=X (y) → X (i):=X (x) O(n)

Kruskal algorithm calls Find m times and Union n − 1
times, so overall O(m+n2) using a characteristic vector.

4. Tree structure data structure is a better union-find im-
plementation. Have collection of trees, with the root be-
ing their representative, each node has directed edge to
their parent. Parent has a self-loop to itself. Don’t need
to represent trees, just function (relationship) parent.

Tree data structure for Union-Find

def Make-Set(x):
create new tree rooted at x, parent(x := x)

def Union(x, y):
parent(Find(x)) := Find(y)

def Find(x):
y := x;
while y ̸= parent(y) { y := parent(y) }
return y

inefficient: n calls to Make-set and Union, m calls to
Find, overall O(n(n+m)). Maintain balanced height
trees to ensure O(log n) height, use path compression to
keep trees shallow, as time of Find = tree height.

5. Path compression: each time Find(x) is performed,
change parent link for all nodes on the path from x to
the root, to point to the root. So (start) x⇝ a⇝ b⇝ p
(parent) becomes x⇝ p, y ⇝ z.

6. Weight/Height/Rank union rule: in Union(x, y) let:
1) Weight: # nodes in the tree containing x be ≥ #
nodes in the tree containing y;
2) Height: height of tree containing x be ≥ height of
tree containing y;
3) Rank: rank (height not updated by path compression)

of tree containing x be ≥ rank of tree containing y;
Set parent(Find(y)) = Find(x). Union now takes O(1).

7. Inverse Ackermann’s function is very small, α(n) ≤
4 for n ≤ A4(1). Defined as: α(n)=min{k : Ak(1) ≥ n}

Ackermann’s function Ak(j) =

{
j + 1, k = 0

Aj+1
k−1(j), k > 0

8. Theorem: sequence of n Make-Set and m Find and
Union operations performed with path compression
rule and either weight or rank union rule takes
O(n+m · α(n)) time - pseudopolynomial.

MST Algorithms

1. Kruskal’s Algorithm runs in O(n+m log n) in general,
and O(m · α(n)) for integer weights {1, 2, ..n2}. Assume
input graph is connected m ≥ n− 1 & simple m ≤

(
n
2

)
.

Kruskal Algorithm O(m log n) or O(m · α(n))
def Kruskal(G):

Initialization: all edges are uncoloured
sort all edges in non-decreasing order
for all edges in the non-decreasing order:

# apply either blue or red rule;
if Find(u) ̸= Find(v):
colour(u,v) blue, Union(u,v)

else colour (u,v) red
return the tree formed by blue edges
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2. Prim’s Algorithm easily done in O(n(n +m)), make
faster: for any vertex v ∈ V \ T , define:

d(v) = min{w(v, u) : u ∈ T, (v, u) ∈ E}

π(v) = u s.t. w(v, u) = d(v), u ∈ T, (v, u) ∈ E

where d(v) is cost of the lightest edge between v and
MST T , and π(v) is the endpoint of that edge.

Initialisation: T has only vertex s, so ∀v ∈ V \ {s}:
• If {s, v} ∈ E, set d(v) = w(v, s) and π(v) = s

•Else, set d(v) = ∞ and π(v) = NIL

Later: find v ∈ V \ T minimising d(v). If v joins T ,
then perform Decrease-Key(v)

Prim’s Algorithm O(n log n+m)

def Prim(G):
Initialization: all edges are uncoloured
repeat n - 1 times:

Let T be a blue tree containing s;
Select a min-weight edge e incident to T;
Colour e blue;

return the tree formed by blue edges

taking O(n2) time with an array, O(n + m log n) using
PQ/heap, and O(n log n+m) with Fibonacci heap:

3. Boruvka Algorithm is good for good parallelism.

Boruvka MST Algorithm

def Boruvka(G):
Initialization: all edges are uncoloured
repeat until a single tree contains all nodes:
for every blue tree T:
Select a min-weight edge e incident to T;
Colour e blue;

return the tree formed by blue edges

4. Round-Robin Algorithm is good for planar graphs.

Round-Robin MST Algorithm O(m log n)

def Round-Robin(G):
Initialization: Q := V # queue of V's partition
repeat n-1 times:
let A be first element of Q
apply blue rule to A and V \ A
let {x,y} be the new blue edge
let x ∈ A and y ∈ B for some set B in Q
delete A and B from Q
add A ∪ B to end of Q

return tree formed by blue edges

Stage 1: ends when the last element originally in Q is
removed.
Stage i : ends when all elements that were in Q at the
start of the stage have been removed.

5. Lemma: sets entering stage k have size ≥ 2k−1; pro-
duced in that stage have size ≥ 2k.
Corollary: There are at most log n stages.
Claim: Each stage can be implemented in O(m) time.

6. Modified Round-Robin (RR): simple graphs have
≤ 3n edges, after each stage, contract all blue trees into
supervertices, delete edges between two vertices in same
tree, and all but the lightest edges between supervertices.

7. Claim: contraction of simple planar graphs gives a sim-
ple planar graph.

8. Round-Robin Algorithm for planar graphs

Round-Robin for Planar Graphs O(n)

def Round-Robin(G):
k := 1; Gk := G
while Gk has more than one vertex:
run a single stage of Round-Robin
contract Gk into Gk+1

k := k + 1

At each stage, we consider graph Gk = (Vk, Ek) with
|Vk| ≤ n/2k−1 vertices, so total runtime is:

logn∑
k=1

O(|Vk|) =
logn∑
k=1

O(n/2k) = O(n)

9. Theorem: RR algorithm for planar graphs can be im-
plemented in O(n) time.

10.Fast Round-Robin MST Algorithm: for super-
graph with ≤ 2m/ log n number of groups:

Run Round-Robin O(log log n) times (so stop early)
so that the original vertices will be connected into
O(n ÷ log n) groups (supervertices). Divide edges inci-
dent to each such supervertex into groups of size ≤ log n
and sort them by weight. Run round-Robin again, but
this time inspect the edges in groups (trees) - need find
the cheapest edge leaving the tree (already sorted, so
cheap), but visiting each neighbour to check if they’re
within the set is too expensive - sort by value first, and
only then check if it’s leading outside the tree:

k∑
i=1

⌈deg(Ui)⌉
logn

≤
k∑

i=1

deg(Ui)

logn
+ 1 =

m

logn
+ 1 ≤

m

logn
+

n

logn
=

m + n

logn
≤

2m

logn

there’s also some near-constant processing time per each
group, approximated at O(log log n). For sparse graph
m ∼ n Round Robin isn’t ideal.

Matching

1. Matching problem: for undirected graph G = (V,E),
matching H is subset of edges s.t. no two edges in H
share an end-point. Max matching:
Goal 1: find a maximum cardinality matching.
Goal 2: if edges are weighted (∀e ∈ E weighs we ≥ 0),
find maximum weight matching (summed edge weights).

2. Bipartite Matching: for undirected bipartite graph
G = (L ∪ R,E) (left, right sets), M ⊆ E is matching if
each node appears in ≤ 1 edge in M . Perfect match-
ing if |M | = |L| = |R|.
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3. Max-Flow problem: given undir G = (V,E) with spe-
cial source s and target/sink t vertices, capacity on every
edge c : E → R>0, find s− t flow f of maximum value.

∀e ∈ E : 0 ≤ f(e) ≤ c(e)

∀v ∈ V \ {s, t} :
∑

(u,v)∈E

f(u, v) =
∑

(v,w)∈E

f(v, w)

Value of f =
∑

(s,u)∈E

f(s, u) =
∑

(v,t)∈E

f(v, t)

maximum flow can be found in polynomial time O(nm).

4. Theorem: size of a maximum matching in G is at most,
and at least (so equal) the value of a max flow in G′

where G′ = (L ∪ R ∪ {s, t}, E′ ∪ {L × s,R × t}) (edge
from source to ∀l ∈ L and from ∀r ∈ R to sink t).

5. Integrality theorem: if k is an integer, then can as-
sume the flow f is either 0 or 1.

6. Free vertex with respect to M is one not incident to
any edge of a matching M in graph G.

7. Alternating path is a path P in G s.t. edges in M
alternate with edges not in M .

8. Augmenting path: alternating acyclic path for match-
ing M that starts and ends at distinct free vertices.

9. Berge Theorem: A matching M is a maximum match-
ing iff there is no augmenting path with respect to M .
Proof : (⇒) if M is maximum then there is no aug-
menting path w.r.t M . Can switch matching and non-
matchingedges along the pat, giving matching M ′ =
M ⊕ P (XOR) with larger cardinality.

(⇐) Suppose there is a matching M∗ with |M∗| > |M |.
Consider graph H with edge set M∗ ⊕M . Each vertex
in H can be incident to ≤ 2 edges (one from M , one
from M∗). So, CCs of H are alternating cycles/paths.
More of edges are from M∗ since |M∗| > |M |, so there’s
only 1 CC that’s a path P for which both endpoints are
incident to edges from M∗, but then P is alternating
path w.r.t. M .

Maximum Bipartite Matching

1. Alternating Tree construction: partition into odd
and even vertices using BFS. Take vertex y, now cases:
1) y is free vertex not contained in T , then found an
augmenting path.
2) y is a matched vertex, neither y nor mate(y) are in T ,
grow the tree by adding such matched edge.
3) y ∈ T as an odd vertex, ignore successor y.
4) y ∈ T as an even vertex, can’t ignore, odd length
cycle, which is not possible in bipartite graphs.

2. Matching algorithm: as long as you find augmenting
path, use it to augment the matching, else is maximum.
Constructing alternating tree takes O(n+m). Since each
matching augmentation increases the size of matching,
and any matching has size ≤ ⌊n/2⌋, will need ≤ ⌊n/2⌋
augmentations, giving overall O(n2(n+m)) runtime.

3. Theorem: Let M be a matching in graph G, and u be
a free vertex w.r.t M . Now, let P be an augmenting
path w.r.t M and M ′ = M ⊕ P be matching resulting
from augmenting M with P . If there was no augment-
ing path starting at u in M , then there’s no augmenting
path starting at u in M ′.
Proof by contradiction: FTSOC assume there is an
augmenting path P ′ w.r.t M ′ starting at u.
If P ′ and P are node-disjoint, P ′ is also an augment-
ing path w.r.t M , contradiction. Otherwise, let u′ be
the first node on P ′ that is also on P . Now P ′

1 ◦ P1

is an augmenting path w.r.t. M , contradiction.

4. Näıve Bipartite Matching: Start with an empty
matching and mark all vertices in L as free. For each
free r ∈ L, grow an alternating tree until you either
reach a free y ∈ R (then augment along the discovered
path and decrement the free count) or exhaust all pos-
sibilities. Repeat until no augmenting path exists.

Näıve bipartite max-matching O(n(n+m))

def BipartiteMatch(G): # G=(L ∪ R,E)
for v in V: mate[v] = 0 # empty matching
free = |L| # initialise to be unmatched
# try each root until all matched
for r in range(1, |L|) while free > 0:
if mate[r] == 0: # if unmatched
parent[v] = None for all v # cleanup
Q = [r]; aug = False; # enqueue root
# grow alternating tree till augment found
while Q ̸= [] and not aug: # or is max-matched
x = Q.pop(0)
for y in neighbours(x):
if mate[y] == 0: # unmatched
augment(parent, y) free -= 1 aug = True
break # match and restart

elif parent[mate[y]] is None:
parent[y] = x # already matched
Q.append(mate[y]) # keep growing

5. Hopcroft-Karp fast max-matching can find maxi-
mum matching in bipartite graph in O(

√
n(n+m)).

6. Ensure that path lengths all grow in each phase, so con-
struct maximal set Π of disjoint augmenting paths w.r.t
M . Denote M ⊕Π = M ⊕ (⊕P∈ΠP ).
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7. Hopcroft-Karp fast max-matching algorithm:
1. Initialise M = ∅
2. Repeat until no augmenting paths exist:

•Build alternating tree rooted at unmatched vertices
in L with BFS, basically a Trie (don’t re-add nodes

• For each unmatched node ri in L: Run DFS rooted
at ri always moving down the BFS tree: using (u, v)
edges with d(v) = d(u)+1, to find shortest augment-
ing path to the first unmatched vertex in R. Then
XOR (augment) the path and remove its vertices to
ensure vertex-disjoint paths.

3. Return M .

Runs in O(
√
n(n + m)), since each phase increases

length of shortest augmenting path by 1, so after
√
np

hases by lemma will only have
√
n paths left, so over-

all augment ≤ 2
√
n times, each augmentation taking

O(n+m) from BFS/DFS.

8. Lemma: Let M∗ be a maximum matching and let M
be any matching in G. If length of the shortest aug-
menting path w.r.t. M is k, then |M∗| − |M | ≤ |V |

k .
Proof : consider graph G∗ = (V,M ⊕M∗). It contains
≥ |M∗|−|M | augmenting paths with respect to M , each
of length ≥ k. Total length of these paths is |V |, so there

are ≤ |V |
k of them.

9. Lemma: Let k be length of shortest augmenting path
w.r.t M . Let Π be maximal set of shortest disjoint aug-
menting paths w.r.t. M (all of length k), then the short-
est such path length w.r.t. M ⊕Π is > k.
Proof : Consider shortest path P w.r.t M ⊕ Π. If P
doesn’t intersect any path from Π then its length is > k
as Π is maximal. Else suppose P intersects paths P1, ..Pt

from Π. Combine these paths to construct t+1 new aug-
menting paths Ri w.r.t M , now |Rj | ≥ k. Total length
of t+ 1 paths is shorter than total length of paths Pi:

t+1∑
i=1

|Ri| < |P |+
t∑

i=1

|Pi| = |P |+ t · k

This and |Rj | ≥ k implies that |P | > k.

10. For bipartite graph G = (L ∪ R,E) and matching M ,
define GM (L ∪R,EM ) as:

EM = {(u, v) : {u, v} ∈ E \M,u ∈ L, v ∈ R}∪{(u, v) : {v, u} ∈ M, v ∈ L, u ∈ R}

Use this to find layered graph G∗
M constructed out of

GM . Let L∗ be free vertices in L, and d : V 7→ N
be distance d(v) from v to vertices in L∗. Then graph
G∗

M = (L ∪R,E∗
M ) contains the following edges:

E∗
M = {(u, v) : (u, v) ∈ EM and d(u) + 1 = d(v)}

11.Lemma: every path in G∗
M that starts in L∗ is a short-

est path in GM .

12.Perfect matching covers all vertices from L.

13.Hall’s Theorem: A bipartite graph G = (L∪R,E) has
a perfect matching iff for all sets S ⊆ L : |Γ(S)| ≥ |S|.
Here, Γ(S) is the set of vertices in R that have a neigh-
bour in S. I.H: ∀S ⊆ L∧|Γ(S)| ≥ |S| → G perf matched.

Proof : (⇒) this condition is necessary, as otherwise not
all nodes would match.

(⇐) For |L| > 1: pick arbitrary v ∈ L that has at least 1
neighbour u ∈ R. Match and remove v, u and their inci-
dent edges. Now find matching of size |L| − 1 in smaller
graph induced on L \ {v}, R \ {u} by induction.

Won’t work if ∃Q ⊆ L \ {v} has < |Q| neighbours in
R \ {u}, take such smallest set Q. Then |Γ(Q)| = |Q|,
so ∀U ⊆ Q : |Γ(U)| ≥ |U | for the I.H. to hold.

By induction, ∃ perfect matching between Q,Γ(Q). For
∀A ⊆ L\Q, by I.H., A∪Q has ≥ |A|+ |Q| = |A|+ |Γ(G)|
neighbours in R. So A has ≥ |A| neighbours in R\Γ(Q),
so ∃ perfect matching between L \Q and R \Γ(G).

14. k-Regular bipartite graph: ∀v ∈ V : deg(v) = k.

15.Lemma: For every d ≥ 1, every d-regular bipartite
graph has a perfect matching.
Proof : take any vertex set S ⊆ L. Since G is d-regular,
cumulative degree

∑
u∈S deg(u) = d · |S|, so there are

Γ(S) ≥ d · |S| neighbours, but # edges incident to Γ(S)
is
∑

u∈Γ(S) deg(u) = d · |Γ(S)|, yielding |Γ(S)| ≥ |S|.

16.Lemma: For every d ≥ 1, every d − regular bipar-
tite graph has exactly d edge-disjoint perfect matchings.
Proof : by Hall’s theorem, every d-regular bipartite has
a perfect matching. Remove one such matching and ob-
tain (d − 1)-regular bipartite graph. Repeat to recur-
sively find d such edge-disjoint perfect matchings.

Weighted Bipartite Matching, VC

1. Vertex Cover (VC) is set C of vertices s.t. all edges
e ∈ E are incident to at least one vertex of C. No edge
is completely contained in V \ C (outside of cover).

2. Weak duality: any vertex cover is at least as large as
the maximum size matching.

3. König’s Theorem: for any bipartite graph, maximum
size of a matching is equal to the minimum size of a VC.
Proof : fix a maximum matching M . Let QL be all
vertices reachable in GM from free vertices in L. Then
C∗ = (L \QL) ∪ (R ∩QL) is a VC with |C∗| = |M |.
All vertices in L are in L∩QL. All free vertices in R are
in R \QL as otherwise would get augmented path w.r.t
M contradicting M ’s maximality.

There’s no edge from M between vetex x ∈ L \QL and
y ∈ R ∩QL, as otherwise x would be in QL (matched).
So, every vertex in C∗ is matched in M and correspond-
ing matching edges are distinct, so |C∗| ≤ |M |.
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4. Weighted Bipartite matching: undirected bipartite
graph G=(L∪R,E), each e=(l, r) ∈ E has edge weight
w(e) ≥ 0.

5. Assignment problem: find a matching of maximum
weight (sum of weights). Wlog assume |L| = |R| = n
and ∃ edge between every pair of nodes (l, r) ∈ L×R.

6. Tight subgraph H(
→
x) of G only contains edges that

are tight (xu + xv = w(e)) w.r.t the node weighting
→
x .

7. Node-weighing
→
x : each v ∈ V , has weight xv ≥ 0.

Invariant: node weights dominate edge weights as:
xu + xv ≥ w(e) for every edge e = (u, v).

Try to compute perfect matching in H(
→
x). Matching

weight is total node weight X =
∑

v∈V xv, optimal if:∑
(u,v)∈M

w(u, v) ≤
∑

(u,v)∈M

(xu + xv) ≤ X =
∑
v∈V

xv

8. Näıve re-weight: to reduce total node weight X =∑
v xv while maintaining the invariant xu+xv ≥ w(u, v)

for all (u, v) ∈ E, and ideally increase size of the maxi-
mum matching in H(x⃗).

Let S ⊆ L be a subset violating Hall’s condition:
|Γ(S)| < |S| where Γ(S) are the neighbours of S inH(x⃗).

• Increase node weights by δ for each v ∈ Γ(S) and
decrease by δ for each u ∈ S.

•This makes edges from S to R \ Γ(S) strictly lighter
(may become tight later), without violating invariant.

•All tight edges remain tight; none become invalid.

•Eventually, new edges may become tight and be added
to H(x⃗), increasing its connectivity and potential
matching size.

After changing weights, there’s at least 1 more edge edge
leaving L ∩ QL, after ≤ n re-weights can do augmenta-
tion. Re-weighting takes O(n2), augmentation O(n), so
overall O(n4). Can do better.

9. Theorem: finding maximum wight matching in bipar-
tite graphs can be done in O(n3) time.

10.Hungarian Algorithm: find a minimum-weight per-
fect matching taking O(n3) time.

1) Reduce to max-weight perfect matching: original cost
of matching M is W (M) =

∑
e∈M w(e). If M∗ is any

other perfect matching, then
∑

e∈M∗ w(e) = W (M∗) ≥
W (M) =

∑
e∈M w(e). Now swap edge weights from w to

−w, to get Ŵ (M∗) = −W (M∗) ≤ −W (M) = Ŵ (M).

2) Ensure all weights are non-negative. Swap weights
from w(e) to w(e) = mine′ w(e

′) where:

(1) ŵ(e) = w(e) = min
e′∈E

w(e′) ≥ 0

(2) Ŵ (M
∗
) = W (M

∗
) − |M∗| · min

e′
w(e

′
) ≤ W (M) − |M| · min

e′
w(e

′
) = Ŵ (M)

Add additional vertices to make both sides of the same
size. Add new edges to make G complete bipartite.

Max-matching in general graphs

1. Construct alternating tree T , now since G = (V,E) is
not necessarily bipartite, can no longer ignore the case
where x, y are on the same even layer, and (x, y) ∈ E.
Let w be their least common ancestor (LCA).

2. Blossom is the odd cycle induced by alternating tree
paths w ⇝ x,w ⇝ y and edge (x, y). Here, even vertex
w is the base of the blossom.

3. Shrinking blossoms: If during alternating tree con-
struction we discover a blossom B, replace G with
G′ = G/B obtained by replacing all vertices in B with a
supervetex b (shrink). Then, find an augmenting path
through that contracted node in G′, augment path, and
replace supervertex b with original vertices in B (lift).

• Initialize. Set all vertices free, mate[v] = 0.

• For each free root r. Start BFS on an alternating
tree: label r even (d[r] = 0), enqueue.

• Explore x. For each unexamined neighbour y:

(A)y even in tree: blossom found → contract the odd-
cycle into b, update labels/distances.

(B)y odd and matched: grow tree via y → z = mate[y],
label z even, enqueue.

(C)y odd and free: augmenting path found, stop BFS.

• Augment & expand. Reconstruct via parent point-
ers, flip matches, expand any contracted blossoms in
reverse.

• Repeat. Continue with next free r until no augment-
ing path exists.

Runs in O(n2(n+m)), can O(n(n+m)) or O(
√
n(n+m))

4. Tree edges of T connected to node u in B become tree
edges in T ′ connecting u to b. Matching edge (stem)
connecting node u not in B to a node in B becomes
matching edge in M ′. Nodes connected in G to at least
one node in B become connected to b in G′.

5. Lemma 1: matching M in G induces matching M ′ in G′:

M ′ := {{u, v} : {u, v} ∈ M ∧ u, v ∈ V \B}
∪ {{u, b} : {u, x} ∈ M ∧ u ∈ V \B ∧ x ∈ B}

Every node in G′ has at most 1 incident matching edge.
All nodes in V \ B have same # matching edges inci-
dent in M in G, so matching condition fulfilled in them.
For node b, can only have at most 1 incident matching
edge since only node in blossom that can have incident
matching edge is the base w.

6. Lemma 2: Current alternating tree T w.r.t. matching
M induces alternating tree T ′ in G′ w.r.t matching M ′:

For every edge {u, v} ∈ T and u, v ∈ V \B, have correspond-

ing {u, v} ∈ T ′; for every such edge with u ∈ V \B and v ∈ B,

introduce edge {u, b} ∈ T ′. Node b becomes even node in T ′;

if root r of T is contained in B then b becomes root of T ′.
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Proof : Must show (i) T ′ is acyclic, (ii) connected, and
(iii) every root–leaf path alternates.

(i) Acyclicity. If T ′ contained a cycle, expanding the
contracted node b back to the blossom B would yield a
cycle in T , contradicting its tree property.
(ii) Connectivity. Contracting the connected sub-
graph B to a single node b cannot disconnect T , so T ′

remains connected.
(iii) Alternation. On any root–leaf path in T ′:

• Edges whose endpoints lie both outside b correspond
exactly to those in T and thus alternate.

• If the path uses an edge (u, b) and then (b, v), by con-
struction (u, b) ∈ M ′ and every other edge incident to b
is not in M ′, so these two also alternate.

Hence T ′ is an alternating tree in G′ w.r.t. M ′.

7. Lemma 3: If G contains augmenting path w.r.t M
starting at root r, then G′ contains an augmenting path
w.r.t M ′ starting at r (or b if r ∈ B).

Proof : Let P be r ⇝ s augmenting path in G w.r.t M .

Case 1. P ∩B = ∅. Then P also lies entirely in G′ and
remains augmenting w.r.t. M ′.

Case 2. P ∩ B ̸= ∅. Since every vertex of B \ {w} is
matched, s /∈ B. Let x be the last vertex of P in B, and
let y be its successor on P . The subpath Pxs alternates
(starting with a non-matching edge) and ends at free s,
so in G′ it induces an augmenting path from b to s.

If r ∈ B, we are done. Otherwise, let S be the alternat-
ing “stem” in T from r to the base w. Flipping M along
S gives a matching M∗ of the same size and an augment-
ing path ending at w ∈ B, which reduces to the previous
subcase. Prepending S then yields an augmenting path
in G′ starting at r.

8. Lemma 4: If G′ contains augmenting path w.r.t M ′

starting at r (or b if r ∈ B), then there exists augment-
ing path in G w.r.t M starting at r.

Proof : Let Q′ be u ⇝ s augmenting path in G′ w.r.t
M ′ where u = r (or u = b if r ∈ B).

Case 1. Q′ ∩ {b} = ∅. Then Q′ lies entirely in G and is
augmenting w.r.t. M .

Case 2. Suppose b ∈ Q′ but r /∈ B. Then Q′ tra-
verses the two edges (g, b) ∈ M ′, (b, h) /∈ M ′ so for some
bq ∈ B, it holds that {g, h} = {mate(w), bq}. Since B
contains an alternating path from w to bq, splicing that
path in place of the vertex b in Q′ produces an augment-
ing path in G w.r.t. M .

Case 3. r ∈ B. Then u = b, and the same “splice-in-
the-stem” argument connects r via an alternating path
in B to the neighbour q of b on Q′, producing an aug-
menting path in G from r to s.

Max-matching in Planar graphs

1. Planar Separator Theorem: let G = (V,E) be sim-
ple planar graph. One can partition V into A,B, S ⊆ V :

|S| ≤ 2
√
2n

n

3
≤ |A|, |B| ≤ 2

3
n

s.t. there is no edge between A,B in G. Can structure
nodes in a

√
n×

√
n grid. Take S = O(

√
n), as the con-

stants are unimportant, have impact only on runtime.
Partition can be found in O(n) time.

2. Since A,B, S are small, solve recursively: find max-
matching in subgraphs of G induced by A, then by B,
and find augmenting paths through S.

T (n) = T (|A|) + T (|B|) + |S| ·O(n)

T (n) ≤ max
n
3 ≤k≤ 2n

3

{T (k) + T (n− k) +O(n1.5)}

T (n) ≤ 2T (2n/3) +O(n
3
2 ) = Θ(nlog3/2 2) ≃ Θ(n1.71)

By induction: for constant c, have T (n) ≤ c · n1.5. For
any n

3 ≤ k ≤ 2n
3 have, differentiate to prove:

k
1.5

+ (n − k)
1.5 ≤

(
n

3

)1.5
+

(
2n

3

)1.5

=

(
1

31.5
+

21.5

31.5

)
n
1.5

T (n) ≤ c · (k1.5
+ (n − k)

1.5
) + α · n1.5 ≤ c · n1.5 ·

1 + 21.5

31.5
+ α · n1.5

Choose c ≥
31.5 · α

31.5 − 1 − 21.5
≃ 3.8 · α.

3. Weighted Planar Separator Theorem: add weight
function w : V → R≥0. Any subset U ⊆ V weighs
W (U) =

∑
u∈U w(u). Total weight W := W (V ), now:

|S| ≤ 4
√
n W (A),W (B) ≤ 2

3
W

4. Minimum Vertex Cover (Min-VC): find vertex
cover of minimum cardinality. NP-hard, takes 2O(

√
n).

5. Brute-force Min-VC algorithm: for every subset
C ⊆ V , check if C is a VC. Out of all sets C that form
a VC, select the smallest one.

Claim 1: the algorithm will find minimum-VC in G.
Claim 2: runtime

∑
U⊆V

O(n+m) = 2n·O(n+m) = 2O(n)

Proof : consider all 2n subsets C ⊆ V , for each subset
need O(n+m) time to determine if C is a VC.

6. Planar Separator Min-VC algorithm:
Outline: For each U ⊆ S, find min-VC CU s.t. CU ∩S =
U , and choose overall min-VC over all such U ⊆ S.

1) CU ∩ S = U if ∀ edge e with both endpoints in S
has ≥ 1 vertex from U , then there’s ≥ 1 VC C of G s.t.
C ∩ S = U , e.g. C = U ∪A ∪B, find min such VC.

2) Let G⟨U⟩ be G with all edges incident to U removed.
VC has to contain vertices ∀u ∈ U and set Q of all
v ∈ A ∪B incident to at least 1 vertex in S \ U , so add
Q, remove all edges incident on it.

3) Claim: C is a vertex cover in G⟨U ∪Q⟩ iff C ∪U ∪Q
is a VC in G. Isolates all s ∈ S, ignore them.

Continue recursively.

7. For each subset U ⊆ S, have TU (n) ≤ Θ(n) + T (|A|) +
T (|B|). Total running time is:

T (n) =
∑

U⊆S

TU (n) ≤ 2
|S|(

Θ(n) + 2T (2n/3)
)
≤ 2

O(
√

n) · 2T (2n/3) ≤ 2
O(

√
n)

.
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Eulerian Paths & Hamiltonian Cycles

1. Eulerian tour visits each edge exactly once and returns
to the starting vertex. G is Eulerian if it admits such
tour. Eulerian trail need not return.

2. Theorem: Let G be undirected connected graph, may
have parallel edges and self-loops. Then G has Eulerian
tour iff degree d(v) is even for every v ∈ V .

Proof : (⇒) Let in(v) be # edges incident to v used
by C to enter v, and out(v) - # to exit v. Now
in(v) = out(v) as tour must enter and exit through dif-
ferent edge each time. Hence, d(v) must be even for
every vertex v ∈ V .

(⇐) Let G be connected graph with even degree ∀v ∈ V
with smallest number of edges s.t. FTSOC G is not
Eulerian. Consider trail C starting and ending at v, vis-
iting nodes through distinct edges until can’t proceed
anymore. Delete this closed trail decreases each vertex
degree by an even number, but G′ = G \C now has add
vertices of even degree. G′ is smaller than G, each CC
of G′ has an Euleerian tour, so combine with C to get
Eulerian tour of G. Contradiction.

3. Theorem: Let G be undirected connected graph.
Then G has an Eulerian trail iff every vertex except
two vertices have even degree.

4. Find Eulerian tour/trail algorithm: assume G con-
nected, all vertices even degrees. Start tour at some
vertex v. Let G′ = G \ C. Now ∀v′ ∈ V ′ : deg(v′) even,
recursively find Eulerian tours C ′

i in every CC of G′.

Combine tours C ∪C ′
i. Since G is connected, both must

share a vertex u. Traverse tour C until reach vertex u,
then traverse entire tour C ′

i starting and returning to
at/to u Continue traversal of C from u. O(|V |+ |E|).

5. Theorem: Let G be directed connected graph. Then
G has Eulerian tour iff ∀v ∈ V : in-deg(v)=out-deg(v).

6. Hamiltonian Cycle visits each vertex exactly once. G
is Hamiltonian if it admits such cycle.

7. Ore Theorem: Let G be connected graph on n ≥ 3
vertices. If non-adjacent ∀u, v ∈ V : d(u) + d(v) ≥ n
then G is Hamiltonian.

Proof by contradiction: Let n ≥ 3 be smallest number
for which the claim doesn’t hold. FTSOC let G be non-
Hamiltonian graph on n vertices with maximal number
of edges which satisfies theorem conditions.

Then ∃ pair of non-adjacent vertices connected by a
Hamiltonian path in G. If G was complete graph on
n ≥ 3 vertices, then it had Hamiltonian cycle, so G isn’t
complete, adding any edge will make it Hamiltonian.

Let u1, ..un be such path. Since u1, un are non-adjacent
in G, then d(u1) + d(un) ≥ n. By pigeon-hole principle,

there exists index i ∈ {2, 3, ..n− 1} s.t u1 is adjacent to
ui and un is adjacent to ui−1.

Then ui−u1−..−ui−1−un−un−1−..−ui is Hamiltonian
cycle. Contradiction.

8. Dirac Theorem: Let G be a graph on n ≥ 3 vertices.
If minv∈V d(v) ≥ n/2 then G is Hamiltonian.

Proof follows from Ore’s Theorem.
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