Lecture Notes

CS254 - Algorithmic Graph Theory

General

- 1. V: Vertices(Nodes), E: Edges(Pairs of Nodes)
- 2. Pairs of nodes comprising relation E are called *edges*
- 3. Two nodes connected by an edge are called adjacent
- 4. G = (V, E): Graph with sets of nodes V and edges E
- 5. Graph (G) "on" V is an Irreflexive, symmetric relation defined by $E = R_{\rightarrow} : V \leftrightarrow V$ (V is any finite set)
- 6. Empty graph has no edges: (V, \emptyset)
- 7. Complete graph K(n) contains all possible edges: K(V) = (V, E), where $E = \{(u, v) \in V^2 | u \neq v\}$
- 8. Graph G is **bipartite** or two-coloured if set of nodes can be partitioned into 2 disjoint subsets $V = V_1 \cup V_2$ s.t. every edge in E connects 2 nodes from diff. subsets V_1, V_2 are colour classes
- 9. K(n) can be read as: 'Any graph isomorphic to $K(\mathbb{N}_n)$ '
- 10. $K(V_1, V_2) = (V_1 \cup V_2, (V_1 \times V_2) \cup (V_2 \times V_1))$ is called a complete bipartite graph. $K(m \in \mathbb{N}, n \in \mathbb{N})$ any graph isomorphic to K(H, W) with m houses, n wells
- 11. A graph with k colour classes is called k-partite
- 12. Complete graph has $\frac{n(n-1)}{2}$ edges.
- 13. Connected graph stays conn. when adding edges
- 14. Acyclic graph stays acyclic when removing edges
- 15. Trees are maximal among acyclic graphs
- 1. **Eulerian** cycle visits each edge only once.
- 2. **Hamiltonian** cycle visits each node only once.
- 3. $V \neq \emptyset$, |V| finite.
- 4. Directed graph: ordered pairs: $e = (v, w) \in E$
- 5. Undirected: unordered $e = \{v, w\} \in E$
- 6. Self-loops: e = (v, v)
- 7. A graph is **simple** if no loops and multiple edges.
- 8. edges(e)=v(source) $w(\text{destination in dir.})G \in E$
- 9. Multiplicity: number of edges between 2 nodes.
- 10. Adjacent nodes: Nodes, connected by an edge.
- 11. Incident nodes: Nodes that an edge connects.
- 12. Self-loops count twice in Vertex degree
- 13. in-deg(v) $\stackrel{\text{def}}{=}$ num. edges where v is destination.
- 14. out- $deg(v) \stackrel{\text{def}}{=} \text{num.}$ edges where v is source.
- 15. $v \to w : vw \in E$
- 16. $v \to^* w : \exists v \hookrightarrow w \text{ or } w \text{ is reachable from } v.$
- 17. Graph G is Eulerian if it has an Eulerian cycle.
- 18. G' is a subgraph of $G(G' \subseteq G)$ if $V' \subseteq V, E' \subseteq E$
- 19. G' spanning subgraph of $G(G' \sqsubseteq G)$ if $V' = V, E' \subseteq E$
- 20. $R_{\subset}, R_{\sqsubset}: \mathcal{G}(V) \leftrightarrow \mathcal{G}(V)$ are part. orders on $\mathcal{G}(V)$
- 21. Tree: connected, acyclic graph.
- 22. Forest: acyclic graph (not necessarily connected)
- 23. If deg(v) = 1 in a tree, then v is a leaf

Graph Connectivity

- 1. **Walk** (of len. k) is a sequence (u, u_1, u_{k-1}, v) s.t. every two consecutive nodes in the sequence are connected by an edge: $(u \rightharpoonup u_1) \land ... \land (u_{k-1} \rightharpoonup v)$
- 2. $u \hookrightarrow v$ "nodes u and v are connected by a walk"
- 3. **Tour** is a walk that returns to the starting node
- 4. Nodes u, v in a graph are connected, if $\exists u \hookrightarrow v$.
- 5. A graph is connected if all (u, v) are connected.
- 6. Connectivity is equivalence relation on the set of all nodes in a graph: $R_{\hookrightarrow}: V \leftrightarrow V$
- 7. Equivalence classes of R_{\hookrightarrow} are "connected components" of graph G. A graph is connected iff it has only 1 connected component.
- 8. A walk where all E are distinct is a **Path**: $u \rightsquigarrow v$ $u = u_0 \rightharpoonup ... \rightharpoonup u_k \rightharpoonup v \ \forall i, j \in \mathbb{N}_{k+1} | u_i \neq u_j$
- 9. **Cycle** is a tour with no edges repeated.
- 10. A graph without cycles is called acyclic
- 11. $R_{\rightarrow}: V \leftrightarrow V$ is equivalence relation
- 12. $\deg(v) = |\{u \in V | v \rightharpoonup u\}|$ (num adjacent nodes)
- 13. **Simple Path** is a walk that repeats no vertices.
- 14. **Simple Cycle**: tour with no vertices repeated except $v_0 = v_n$
- 15. A graph is planar, if can be embedded in the plane s.t. the lines representing different edges do not cross.
- 16. Usually want to identify graphs which are "the same up to a renaming of nodes"
- 17. Graphs $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$ are isomorphic if bijective func. $f: V_1 \leftrightarrow V_2$, preserving edges exists: $\forall u, v \in V_1 | (u, v) \in E_1 \equiv (f(u), f(v)) \in E_2$, where bijective f is an isomorphism between G_1 and G_2
- 18. **Subdivision** of a graph G = (V, E): choose an edge $\{u, v\} \in E$, remove it, add a new vertex $x \notin V$, and insert the edges $\{u, x\}$ and $\{x, v\}$.
- 19. Undirected: $\{x,y\} \in E$, Directed: $(x,y) \in E$.
- 20. Independent Set $X \subseteq V$ if $\forall x, y \in X : \{x, y\} \notin E$.

Theorems

- 1. $\forall u, v \in V | \exists u \leadsto v \text{ iff } \exists u \hookrightarrow v$
- 2. G has Euler tour iff: G connected, $\forall v \in V : |v|$ even (Euler, Hierholzer)
- 3. Handshaking Lemma: $\sum_{v \in V} \deg(v) = 2 \cdot |E|$
- 4. Let G = (V, E) be a tree. Then |V| = |E| + 1
- 5. Every tree with at least one edge has a leaf.
- 6. Partial order R_{\sqsubseteq} on set of all asyclic graphs on finite set V. Graph G = (V, E) is maximal iff it's a tree.
- 7. Graph is **planar** iff it has no subgraph isomorphic to a graph obtained from K(5) or K(3,3) by a sequence of subdivisions.

Intro

- 1. For graph G = (V, E): Order n = |V|, Size m = |E|.
- 2. $\operatorname{Deg}(v) = \operatorname{in-deg}(v) + \operatorname{out-deg}(v)$. $\sum_{v \in V} \operatorname{deg}(v) = 2|E|$. Δ denotes the maximum degree d(v) of a node in $v \in V$.
- 3. Subgraph G' = (V', E') of G = (V, E) if $V' \subseteq V \land E' \subseteq E$. Spanning subgraph if V' = V (share all vertices). Induced subgraph if $\forall e_j \in E$ incident on $v'_i \in V' : e \in E'$ (some nodes but all original edges connecting them).
- 4. Multigraph (pseudograph) allows multiple edges between two vertices and self-loops, so E becomes a multiset of edges, each being a multiset of vertices over V. Otherwise the graph is **simple**.
- 5. Forest: undirected graph without a cycle. Tree is a connected forest. Spanning tree if the spanning subgraph is a tree. DAG is a directed asyclic graph.
- 6. Graph directed: $0 \le m \le 2 \cdot \binom{n}{2}$; Forest: $m \le n-1$; Simple undirected: $0 \le m \le \binom{n}{2}$; DAG: $m \le \binom{n}{2}$
- 7. Incident edge: touches a vertex. Endpoints u, v of $e = (u, v) \in E$ Adjacent vertices/edges: share an edge/vertex. Directed edge: Goes from tail to head $(u \to v)$. Consecutive edges: (u, x), (x, v) (tail₁ = head₂) Consecutive nodes: Connected as $tail \to head$.
- 8. **Path** $P = v_1, ..., v_k$ is a $v_1 \leadsto v_k$ or (v_1, v_k) -path. Undirected G **connected** if $\forall u, v \in V : \exists (u \leadsto v) \lor (v \leadsto u)$, strongly connected if $\forall u, v \in V : \exists (u \leadsto v) \lor (v \leadsto u)$

$$f \in O(g) \quad \text{iff} \quad \begin{cases} \forall n \in \mathbb{N}. \exists c > 0 : f(n) \leq c \cdot g(n) \\ \lim_{n \to \infty} \frac{f(n)}{g(n)} < +\infty \end{cases}$$

$$9. \quad f \in \Theta(g) \quad \text{iff} \quad f \in O(g) \land g \in O(f)$$

$$f \in \Omega(g) \quad \text{iff} \quad g \in O(f)$$

$$f \in \omega(g) \quad \text{iff} \quad \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

- 10. Can represent a graph using
 - Edge list: directed/undirected depends on interpretation. Storage O(m), useful for I/O, but not many other operations. Computing d(v) takes O(m).
 - Adjacency list (default): takes O(n+m) storage, but checking if $(u, v) \in E$ takes $\Theta(\min\{d(v), d(u)\})$.
 - Adjacency matrix: Storage $O(n^2)$, wasteful since most graphs are sparse with $m \ll n^2$. Find 1 neighbour in O(1), all in $\Theta(n)$, most other operations in $\Omega(n^2)$.
 - Implicit representation: e.g. edge exists from x to y if y is in the ball with radius r(x) around x.

Bipartiteness

1. Undirected G = (V, E) is **bipartite** if $V = V_1 \cup V_2$ with one endpoint per edge: $\forall e \in E : |e \cap V_i| = 1$ for i = 1, 2. Directed bipartite if $V = V_1 \cup V_2$, $E \subseteq (V_1 \times V_2) \cup (V_2 \times V_1)$.

- 2. **Corollary**: graph is bipartite iff it has no odd-length cycle. Bipartite graph has 2 independent vertex sets.
- 3. Let \sim denote **connectedness-relation** on G: $u \sim v \equiv u$ connected to $v \in V$. Reflexive, symmetric, transitive. Its equivalence classes are G's **connected components**

resulting R contains connected component of G which is a tree with shortest (s, v)-path from root s to all $v \in V$ if BFS (R is a queue q, u = q[0]), DFS if R is a stack.

4. **Lemma**: if G bipartite, then $\nexists\{u,v\}$ edge with u,v on the same level i in BFS-tree because otherwise the lowest common ancestor L_{i-t} , t layers above L_i produces a cycle of length 2t+1, which is odd, so contradiction.

```
Bipartiteness BFS  O(n+m)  def TestBipartiteness(G): for each unvisited node s in G: BFS(s), assigning levels; #connected component if \exists \{u,v\} \in E with level(u) = \text{level}(v): return false; return true;
```

BFS

- 1. **BFS Property 1**: edges not within BFS tree can only connect successive layers or vertices on the same layer. **BFS property 2**: BFS tree contains shortest (s, v)-path for every vertex v reachable from s.
- 2. BFS helps find (strongly) connected components, test bipartiteness and sort topologically, all running in $O(1) + \sum_{u \in V} (d(u) + O(1)) = \underline{O(n+m)}$ time if adjacency list.
- 3. Adj list: go through all V in O(n), for vertex v go through neighbours in O(d(v)), but checking if $(u, v) \in E$ takes $\Theta(\min(d(u), d(v)))$.
- 4. Sink is a vertex $u \in V$ if $\deg_{in}(u) = n 1, \deg_{out} = 0$. No simple directed graph has more than one sink. If $(u, v) \in E$ then u isn't a sink, if false, then v isn't one. Repeat n - 1 times until 1 left, to check if it's a sink, taking O(3(n-1)) with adjacency matrix.
- 5. **Theorem**: any algorithm determining if graph is bipartite that has input as undirected graph G = (V, E) represented as an $n \times n$ adj matrix has $\Omega(n^2)$ runtime. **Proof**: consider ALG on a **star** $G_0 = (V, E_0)$ with $V = \{1, 2, ..n\}, E_0 = \{\{1, i\} : 2 \le i \le n\}$. Suppose checked $< \binom{n-1}{2}$ queries, then there are some entries ALG hasn't visited editing those constructs G^* s.t. G and G^* are **indistinguishable** by ALG, so both return same result, but shouldn't, hence must visit n^2 items.

DFS numbering

- 1. Find **connected components** by running DFS or BFS from vertex $s \in V$, removing that connected component, repeat until $V = \emptyset$. If component C has n_C vertices and m_C edges, either take $O(n_c + m_c)$ and O(n + m) in total.
- 2. **DFS number** N[v]: distinct DFS finish time at $v \in V$, if u ancestor of v (forward edge) or not related (cross edge) N[u] > N[v], else backward edge: N[u] < N[v].

Maintain non-active, active & finished nodes.

- 3. **DFS-tree** in 1 execution of the recursion. **DFS-forest**: sum of disjoint trees. **Forward edge** from node to its descendant. **Backward edge** from node to its ancestor. **Cross edge** between non-ancestor/descendant edges.
- 4. DFS trees only have forward/backward, no cross edges.

Directed Cycles, Topological Sort

- 1. Asyclic graph with no parallel edges has $0 \le m \le n-1$ edges if undirected, and $0 \le m \le \binom{n}{2}$ if directed.
- 2. **Directed Acyclic Graph (DAG)** is a directed graph G = (V, E) with no cycles.
- 3. **Topological sort** is map $\phi: V \to \{1,..,n\}$ s.t. $\forall (u,v) \in E: \phi(u) < \phi(v)$ visit order in digraph. In DAG, DFS numbering would produce N[u] < N[v] (since no backwards edges), so its reverse is topologically sorted.
- 4. **Theorem**: digraph has topological sort iff it's a DAG. **Proof**: (\Rightarrow) suppose G has topological sort, FT-SOC assume G has cycle $C = \{x_0, ...x_k\}$. wlog let $x_0 = \min_{i \in \{1,...k\}} \{\phi(x_i)\}$, or the vertex of C with smallest number. Then $(x_k, x_0) \in E$ but $\phi(x_k) \ge \phi(x_0)$ (\Leftarrow) Suppose G is DAG, then \exists a sink, number it n and delete from G, recursively number the rest. Find a sink in O(n), decrement out-deg of each node directed at v, so for each node u takes O(out-deg(u)), overall O(n+m).
- 5. **Reminder:** if $v \in V$ is a **sink**, then all non-sink $u \in V$ have to have an edge $(u, v) \in E$. Can have ≤ 1 sink.
- 6. **DAG cycle detection**: compute DFS numbering N on digraph G, set $\phi(v) = n N[v] + 1$. For every $(u, v) \in E$ check if $\phi(u) < \phi(v)$, if some edge fails then G is not DAG, else it is DAG, hence has no cycles.

Connected Components

- 1. **Reminder**: for undirected graph G = (V, E), vertices $u, v \in V$ are **connected** if \exists path $u \leadsto v$ and **strongly connected** if also \exists path $v \leadsto u$.
- 2. Connectedness relation an equivalence relation its equivalence classes are (strongly) connected components (S)CC of G. Can find SCC/CCs with BFS/DFS in O(n+m) time.
- 3. Can use SCC to design efficient algorithms. Let G = (V, E) be digraph. Find SCCs of G, **contract** each SCC into a single **supervertex**. Becomes **meta graph** G^* once all are contracted. Claim: contracted G^* is asyclic **Proof**: FTSOC suppose G^* not asyclic, then \exists cycle $x_0, ...x_k, x_0$ s.t. each x_i is a SCC. But then all vertices in any x_i, x_j are strongly connected: use path $x_i, x_{i+1}, ...x_j$ in one direction, and path $x_j, x_{j+1}, ...x_0, x_1, ...x_j$ in other. Contradiction SCCs are not distinct, so G^* is DAG.
- 4. SCC algorithm recipe: 1. Find SCCs, contract each.2. topologically sort contracted components. 3. Use DP on DAGs to solve the problem.
- 5. Observation: if we start DFS at any $x \in V$ belonging to sink of G^* meta graph, then we explore the whole SCC of x, but no other super vertex.
- 6. **Lemma**: let C_1 , C_2 be two SCCs of G with (C_1, C_2) edge in meta graph: $\max_{u \in C_1} N(u) > \max_{v \in C_2} N(v)$ as $(u, v) \in E, u \in C_1, v \in C_2$, so (u, v) is a cross edge, so N(u) > N(v).

Corollary: vertex with maximal DFS number is contained in source vertex of meta-graph.

- 7. Reverse graph: let G' = (V, E') be reverse graph of G = (V, E) with all edges reversed. Then meta graph of G' is the reverse of meta graph G^* of G, so same SCCs. Corollary: if run DFS on G', then vertex with maximal DFS number is contained in sink SCC of G^*
- 8. Kosaraju's Algorithm: find SCCs via DFS. 1. Compute reverse graph G' of G. 2. Run DFS on G' and compute finish number N(v) for every vertex $v \in V$. 3. Run DFS on G where restarting is always done at v with max-value of N(v) among yet unvisited vertices.
- 9. **Theorem**: Kosaraju's algorithm finds all SCCs of a digraph in time O(n+m).

Biconnected components and DFS

- 1. Undir G is **biconnected** if $G \setminus \{v\}$ is connected $\forall v \in V$.
- 2. **Cut-vertex** or **articulation point** is vertex whose removal disconnects the graph.
- 3. Biconnected component of G is its maximal biconnected subgraph.

- 4. Graph is k-vertex connected if removal of any k-1 Efficient Tree & DAG Algorithms vertices leaves remaining graph connected.
- 5. Let \sim be equivalence **relation** on E s.t. $e_1 \sim e_2$ iff e_1, e_2 are contained in a simple cycle in G or $e_1 = e_2$. It's reflexive, symmetric and transitive.
- 6. **Transitivity**(\sim):if \exists two simple cycles containing e_1, e_2 , and e_2, e_3 respectively, then \exists one containing e_1, e_3 . **Proof:** find simple cycle as follows. Let e_2 together with $e_1 = (u_0, u_1), e_3 = (v_0, v_1)$ be contained within simple cycles $C_1 = (u_0, u_1, ... u_k)$ and $C_2 = (v_0, v_1, ... v_r)$, respectively. Let $s \in \{1,..k\!-\!1\}$ and $l \in \{2,..k\}$ be smallest and largest index s.t. $u_s, u_l \in C_2$. Assume their indices in C_2 are s' and l', which must exist, be different; if s' < l' then sequence $u_0, ... u_s = v_{s'}, v_{s'-1}, ... v_0, v_r, ... v_{l'+1}, v_{l'} = u_l, ... u_k)$ is a simple cycle, similarly for l' < s'
- 7. If root node has at least two children then it will always be an **articulation point**, otherwise isn't. Leaves are never articulation points. Internal node is articulation point when none of its descendants have a back edge to one of its proper ancestors.
- 8. Low-point of node v in DFS-tree is lowest level (closest to the root) among the neighbours of (all) nodes in the subtree T_v rooted at v (subgraph starting at v).
- 9. Articulation Point search: compute DFS tree. Compute level and low-point for each node. \forall internal nodes check if low-point of one of its children is $\geq v$ if so, it's articulation, else not. Can do using one DFS traversal.

```
Articulation point search algorithm O(n+m)
def Articulation-Points(G,x,1):
 x.level = 1; x.visited = true;
 \forall \{x,y\} \in E \text{ do: } \# \text{ visit children}
    if y unvisited: Articulatoin-points(G,y,l+1);
  x.low_point = x.level; x.articulation = false;
 \forall \{x,y\} \in E \text{ do}:
    if y.level = l+1: # y is child of x
      x.low_point = min{y.low_point, x.low_point}
      if y.low_point \ge x.level:
        x.articulation = true;
    else: x.low_point = min{y.level,x.low_point};
```

10. **Theorem**: can find all articulation points and all biconnected components in O(n+m) time.

```
11.
      Bipartiteness DFS
                                                  O(n+m)
      def TestBipartiteness(G):
        compute DFS-tree, compute level \forall u \in V
        if \exists \{u,v\} \in E with both u,v on odd/even level:
          return false
        else: return true
```

12. Claim: G is bipartite iff every edge in G is between a vertex on odd level and vertex on even level of DFS tree. 8. **Theorem**: $\mathcal{X}(G) \leq \Delta(G) + 1$ for any graph G.

- 1. Undirected graphs efficient if trees or forests, with topdown or bottom-up in O(n) time. Directed graphs efficient if DAG, with topological sort + DP.
- 2. Longest (simple) path is NP-hard, but O(n) for trees and O(n+m) for DAGs.
- 3. Longest simple path in forest: run DFS from root r, then for each vertex $u \in V$: Let LPI(u) = longest path fully in subtree rooted at u, LPT(u)=longest path from u to any descendant. Then in O(n) time return LPI(r):

$$LPI(u) = \max \begin{pmatrix} \max_{1 \le i \le s} LPI(v_i), \\ 2 + \max_{1 \le i < j \le s} (LPT(v_i) + LPT(v_j)) \end{pmatrix}$$

$$LPT(u) = 1 + \max_{1 < i < s} LPT(v_i)$$

4. Longest simple path in DAG takes O(n+m) time:

Longest Simple Path in DAG $\mathbf{O}(n+m)$ 1. Topologically sort G 2. **for** i **in range**(n, 1): LP(i) = 0; for each edge $(i,j) \in E$: # edge relaxation if 1+LP(j)>LP(i): LP(i)=1+LP(j) 3. return largest LP(i)

Aspect	Forest (tree)	DAG
Traversal State per node Time	$\begin{array}{c} \text{single DFS+DP} \\ \text{LPI,LPT} \\ O(n) \end{array}$	topo-sort,edge relax. LP $O(n+m)$

Graph Colouring

- 1. Proper vertex-colouring of G with set of colours C is a function $c: V \to C$ s.t. $c(u) \neq c(v)$ for all $(u, v) \in E$. If |C| = k, then called (proper) **k-colouring**.
- 2. Chromatic number $\mathcal{X}(G)$ of graph G is the smallest k s.t. there exists a k-colouring of G.
- 3. Lemmas: $\mathcal{X}(G)=2$ if G bipartite; $\mathcal{X}(T)=2$ if T is tree; $\mathcal{X}(C)=3$ for odd cycle C and $\mathcal{X}(K_n)=n$ complete graph
- 4. **Lemma** : If graph G has subgraph G': $\mathcal{X}(G) \geq \mathcal{X}(G')$
- 5. Clique-number $\omega(G)$ is cardinality of largest subset $K \subseteq V$ s.t. G[K] is a complete graph, where G[K] is subgraph of G induced by vertex set K.
- 6. **Lemma**: if graph contains k-clique K_k : $\mathcal{X}(G) \geq \omega(G)$.
- 7. **Lemma**: GreedyColours colours G with $\leq \Delta(G) + 1$ colours, where $\Delta(G)$ denotes maximum degree of G.

```
Greedy Colouring
def GreedyColouring(G): initialise i = 1;
  while i \le n: # c(n) is colour number of node n
    c(v_i) = \min_{j < i} \{ \mathbb{N} \setminus \{ c(v_j) : \{ v_i, v_j \} \in E \} \}
    i += 1
```

Planar Graphs

- 1. Graph G is **planar** if it can be drawn in plane \mathbb{R}^2 with every vertex v drawn as a point $f(v) \in \mathbb{R}^2$ and every (u,v) edge as continuous curve between f(u) and f(v) s.t. no two edges intersect except possibly, end points.
- 2. Plane graph or planar embedding is a planar drawing of a planar graph. Faces of this drawing are connected components of \mathbb{R}^2 after we delete drawing's vertices, edges. *Note:* square has 2 faces: inside, outside.
- 3. **Euler's Formula**: Let G = (V, E) be a connected planar graph. Let F be the set of faces of G's planar embedding, and cc_G is # connected components in G:

$$|V| + |F| = \left\{ \begin{array}{cc} 2 + |E| & \text{if } G \text{ connected} \\ 1 + cc_G + |E| & \text{if } G \text{ not connected} \end{array} \right.$$

Proof by induction: **Base case**: if G is acyclic, then |F|=1, so theorem holds since G is tree and |E|=|V|-1. **Inductive step**: assume G has a cycle C, let $e \in C$, then delete e from G, resulting in G^* . Now G^* has |V| vertices, |E|-1 edges and |F|-1 faces, so

$$|V| + (|F| - 1) = (|E| + 1) \Rightarrow |V| + |F| = 2 + |E|$$
 (Can keep removing cycles until base case reached.)

- 4. So, every tree, cycle and K_4 is planar, but K_5 or $K_{3,3}$ is not. Note: |F| is independent of planar embedding.
- 5. **Theorem**: for any simple connected planar graph G with n > 2 it holds that $|E| \le 3|V| 6$.

Proof: every face has ≥ 3 edges bounding it. Every edge bounds ≤ 2 faces, so $2|E| \geq 3|F|$, euler's formula: $|E| = |V| + |F| - 2 \Rightarrow 3|E| = 3|V| + 3|F| - 6 \leq 3|V| + 2|E| - 6$

6. Corollary: K_5 is not planar.

Proof: K_5 has 5 vertices, each vertex has 4 neighbours, so n = 5, m = 10, must hold: $m \le 3n - 6$, but $10 \ge 3 \cdot 5 - 6$, contradiction. \square

- 7. **Lemma**: every simple planar graph has vertex of degree at most 5. **Proof** by contradiction: FTSOC suppose $\forall v \in V : d(v) > 5$, then $2|E| = \sum_{u \in V} d(u) \ge \sum_{u \in V} 6 = 6|V|$ but $\forall n > 2$: $|E| \le 3|V| 6$, contradiction. \square
- 8. Corollary: Every simple planar graph is 6-colourable. Proof: Base case: trivially holds for $n \leq 6$. In O(n): inductive step: find vertex v with $d(v) \leq 5$. Recursively colour G v using 6 colours. Now return v and choose out of 6 d(v) = 1 remaining colours, assign to v as graph remains simple planar upon vertex deletion. \square
- 9. Lemma: Every simple planar graph is 5-colourable. Proof by induction: Base case: if G has vertex v of degree d(v) ≤ 4, do induction same as 5-colourability. Otherwise ∃v s.t. d(v)=5, remove v from G and colour obtained graph, bring v back. If among 5 neighbours, not all 5 colours are used - assign missing colour to v.

Otherwise wlog v has 5 neighbours $u_1, ... u_5$ meaning vertex u_i has colour i. Try to replace u_1 's colour with colour 3. Consider subgraph H of G induced by vertices with colours 1, 3. If u_1 is disconected from u_3 in H, then consider component of H containing u_1 , swap colours 1, 3 in that component and colour v with colour 3.

Otherwise take $u_1 \rightsquigarrow u_3$ path π in H. If add edges $\{v, u_1\}, \{v, u_3\}$ to π then obtain **Jordan curve** separating u_2 from u_4 . So graph induced by vertices coloured 2, 4 can't have u_2 and u_4 connected, so in that graph's component containing u_4 swap colours 2,4. Colour v with colour 4, as neighbours only have 4 colours. \square

- 10. **Theorem**: Every simple planar graph is **4-colourable**.
- 11. **Dual graph** $G^* = (V^*, E^*)$ of planar graph G = (V, E): each vertex $u \in V^*$ corresponds to a face in G. Two vertices in G^* are connected by an edge if corresponding faces in G have boundary edge in common. G^* is planar, $|V^*| = |F|, |E^*| = |E|, |F^*| = |V|$
- 12. **Theorem**: any map in a plane can be coloured using four colours s.t. regions sharing a common boundary (other than single point) do not share same colour. **Proof**: consider **duals** of planar graphs.
- 13. **Kuratowski's Theorem**: A graph G is planar iff it has no minor isomorphic to K_5 or $K_{3,3}$ if it's impossible to subdivide edges of either and add edges and vertices to obtain G.

MST

- 1. Graph $S=(V_S, E_S)$ is **spanning subgraph** of G=(V, E) iff it covers all its vertices $V_S = V$ and uses some of its edges $E_S \subseteq E$.
- 2. Spanning tree (ST) is a maximal (adding any new edge would create a cycle) connected spanning subgraph of G with no cycles and $|\mathbf{V}| 1$ edges.
- 3. Minimum Spanning Tree (MST) is ST of undirected connected graph G with weighted edges that has the minimum weight.
- 4. **Meta-Algorithm**: build ST edge by edge by including a blue edge or excluding a red one until the tree is built.

Blue Rule: partition $V = V_1 \cup V_2$, subgraphs $G_1, G_2 \subseteq G$ vertex-induced by V_1, V_2 connected by **uncoloured** edges, choose **lightest** such edge, colour it blue.

Red Rule: select any simple cycle containing no red edges, colour the maximum weight uncoloured edge red.

MST Meta Algorithm

def Meta-Algorithm(G):

Initialise: all edges $\forall e \in E$ are uncoloured while there are uncoloured edges: apply either blue or red rule return tree formed by blue edges

- 5. Colouring invariant: there exists a MST that contains 4. Tree structure data structure is a better union-find implementation. Have collection of trees, with the root be-
- 6. **Theorem (preserving invariant)**: after meta algorithm colours all edges, the blue edges will form a MST. In other words, the meta algorithm is correct. **Proof**:

Blue rule: Let T be MST (before colouring edge e). If e is blue, and is already in T, then the invariant holds. If it isn't then there must exist a path in T connecting e's endpoints, containing some edge e^* . Since e^* is uncoloured and weight $w(e^*) \geq w(e)$, can replace e^* with e preserving the MST property. \square

Red rule: if e is red, then if $e \notin T$ then the invariant holds, otherwise deleting e in T creates subtrees V_1, V_2 . Since e was part of cycle when coloured red, \exists some uncoloured edge e^* in that cycle with $w(e^*) \leq w(e)$, so replacing e with e^* preserves MST property. \Box

Termination: FTSOC, assume algorithm stops while some edges are still uncoloured, but initially blue edges form a forest. For any uncoloured edge e: if its endpoints are in **same** blue tree, red rule removes e, if in different blue trees, applying blue rule adds e, so uncoloured edge always allows a rule to be applied, contradiction.

- 7. Any MST algorithm implementing meta algorithm framework is correct. A few such algorithms:
 - Kruskal's: $O(m \log n)$, or $O(m\alpha(n))$ for int weights.
 - **Prim's:** $O(n^2)$, or $O(m \log n)$ with simple priority queues, or $O(m + n \log n)$ with Fibonacci heaps.
 - Borůvka's: Suitable for parallel implementations.
 - Round-robin: $O(m \log \log n)$ or O(n) in planar graphs.

MST Data Structures, Union-Find

- 1. **Union-Find** data structure maintains disjoint dynamic sets $S = \{s_1, ... s_k\}$ supporting following three operations:
 - Make-Set(x) creates new set whose only member is x.
 - Union(x, y) unites disjoint sets containing x, y into a new set that is the union of the two sets.
 - Find(x) returns representative of set containing x. Typically need O(n) Union and O(m) Find operations.
- 2. In union find, two vertices are in the same blue tree if their Find returns the same representative. Blue rule: merge two trees into one, red rule: do nothing. Each set s_i contains vertices from the same blue tree.
- 3. Characteristic vector is the simplest implementation of union-find, write $\mathcal{X}^{(i)}$ be the representative of set containing i. Basically array where index is vertex number and value is that vertexes representative.

Make-Set(x): $\mathcal{X}^{(x)} = x$ O(1) Find(x): return $\mathcal{X}^{(x)}$ O(1) Union(x,y): for i=1 to $n: \mathcal{X}^{(i)} = \mathcal{X}^{(y)} \to \mathcal{X}^{(i)} := \mathcal{X}^{(x)}$ O(n)

Kruskal algorithm calls Find m times and Union n-1 times, so overall $O(m+n^2)$ using a characteristic vector.

4. **Tree structure** data structure is a better union-find implementation. Have collection of trees, with the root being their representative, each node has directed edge to their parent. Parent has a self-loop to itself. Don't need to represent trees, just function (relationship) parent.

```
Tree data structure for Union-Find def Make-Set(x):
    create new tree rooted at x, parent(x := x) def Union(x, y):
    parent(Find(x)) := Find(y)
def Find(x):
    y := x;
    while y \neq \text{parent}(y) { y := \text{parent}(y) }
    return y
```

inefficient: n calls to Make-set and Union, m calls to Find, overall O(n(n+m)). Maintain balanced height trees to ensure $O(\log n)$ height, use path compression to keep trees shallow, as time of Find = tree height.

- 5. **Path compression**: each time Find(x) is performed, change parent link for all nodes on the path from x to the root, to point to the root. So (start) $x \rightsquigarrow a \rightsquigarrow b \rightsquigarrow p$ (parent) becomes $x \rightsquigarrow p, y \rightsquigarrow z$.
- 6. Weight/Height/Rank union rule: in Union(x, y) let:
 - 1) **Weight:** # nodes in the tree containing x be $\geq \#$ nodes in the tree containing y;
 - 2) **Height:** height of tree containing x be \geq height of tree containing y;
 - 3) **Rank:** rank (height not updated by path compression) of tree containing x be \geq rank of tree containing y; Set parent(Find(y)) = Find(x). Union now takes O(1).
- 7. Inverse Ackermann's function is very small, $\alpha(n) \leq 4$ for $n \leq A_4(1)$. Defined as: $\alpha(n) = \min\{k : A_k(1) \geq n\}$ Ackermann's function $A_k(j) = \begin{cases} j+1, & k=0 \\ A_{k-1}^{j+1}(j), & k>0 \end{cases}$
- 8. **Theorem**: sequence of n Make-Set and m Find and Union operations performed with path compression rule and either weight or rank union rule takes $O(n + m \cdot \alpha(n))$ time pseudopolynomial.

MST Algorithms

1. **Kruskal's Algorithm** runs in $O(n+m\log n)$ in general, and $O(m\cdot\alpha(n))$ for integer weights $\{1,2,..n^2\}$. Assume input graph is connected $m \geq n-1$ & simple $m \leq \binom{n}{2}$.

```
Kruskal Algorithm O(m \log n) or O(m \cdot \alpha(n))

def Kruskal(G):
    Initialization: all edges are uncoloured sort all edges in non-decreasing order for all edges in the non-decreasing order:
    # apply either blue or red rule;
    if Find(u) \neq Find(v):
        colour(u,v) blue, Union(u,v)
    else colour (u,v) red
    return the tree formed by blue edges
```

faster: for any vertex $v \in V \setminus T$, define:

$$d(v) = \min\{w(v,u): u \in T, (v,u) \in E\}$$

$$\pi(v) = u \text{ s.t. } w(v,u) = d(v), u \in T, (v,u) \in E$$

where d(v) is cost of the lightest edge between v and MST T, and $\pi(v)$ is the endpoint of that edge.

Initialisation: T has only vertex s, so $\forall v \in V \setminus \{s\}$:

- If $\{s,v\} \in E$, set d(v) = w(v,s) and $\pi(v) = s$
- Else, set $d(v) = \infty$ and $\pi(v) = \text{NIL}$

Later: find $v \in V \setminus T$ minimising d(v). If v joins T, then perform Decrease-Key(v)

```
Prim's Algorithm
                                        O(n\log n + m)
\operatorname{def} \operatorname{Prim}(G):
    Initialization: all edges are uncoloured
    repeat n - 1 times:
        Let T be a blue tree containing s;
        Select a min-weight edge e incident to T;
        Colour e blue;
    return the tree formed by blue edges
```

taking $O(n^2)$ time with an array, $O(n + m \log n)$ using PQ/heap, and $O(n \log n + m)$ with Fibonacci heap:

3. Boruvka Algorithm is good for good parallelism.

```
Boruvka MST Algorithm
def Boruvka(G):
 Initialization: all edges are uncoloured
  repeat until a single tree contains all nodes:
   for every blue tree T:
     Select a min-weight edge e incident to T;
     Colour e blue;
  return the tree formed by blue edges
```

4. Round-Robin Algorithm is good for planar graphs.

```
Round-Robin MST Algorithm
                                         O(m \log n)
def Round-Robin(G):
 Initialization: Q := V # queue of V's partition
  repeat n-1 times:
   let A be first element of Q
   apply blue rule to A and V \setminus A
   let {x,y} be the new blue edge
   let x \in A and y \in B for some set B in Q
   delete A and B from Q
   add A \cup B to end of Q
return tree formed by blue edges
```

Stage 1: ends when the last element originally in Q is removed.

Stage i: ends when all elements that were in Q at the start of the stage have been removed.

5. **Lemma**: sets entering stage k have size $\geq 2^{k-1}$; produced in that stage have size $\geq 2^k$.

Corollary: There are at most $\log n$ stages.

Claim: Each stage can be implemented in O(m) time.

- 2. Prim's Algorithm easily done in O(n(n+m)), make 6. Modified Round-Robin (RR): simple graphs have $\leq 3n$ edges, after each stage, contract all blue trees into supervertices, delete edges between two vertices in same tree, and all but the lightest edges between supervertices.
 - 7. Claim: contraction of simple planar graphs gives a simple planar graph.
 - 8. Round-Robin Algorithm for planar graphs

```
Round-Robin for Planar Graphs
                                              O(n)
def Round-Robin(G):
 k := 1; G_k := G
 while G_k has more than one vertex:
   run a single stage of Round-Robin
   contract G_k into G_{k+1}
   k := k + 1
```

At each stage, we consider graph $G_k=(V_k,E_k)$ with $|V_k|\leq n/2^{k-1}$ vertices, so total runtime is:

$$\sum_{k=1}^{\log n} O(|V_k|) = \sum_{k=1}^{\log n} O(n/2^k) = O(n)$$

- 9. **Theorem**: RR algorithm for planar graphs can be implemented in O(n) time.
- 10. Fast Round-Robin MST Algorithm: for supergraph with $\leq 2m/\log n$ number of groups:

Run Round-Robin $O(\log \log n)$ times (so stop early) so that the original vertices will be connected into $O(n \div \log n)$ groups (supervertices). Divide edges incident to each such supervertex into groups of size $\leq \log n$ and sort them by weight. Run round-Robin again, but this time inspect the edges in groups (trees) - need find the cheapest edge leaving the tree (already sorted, so cheap), but visiting each neighbour to check if they're within the set is too expensive - sort by value first, and only then check if it's leading outside the tree:

$$\sum_{i=1}^k \frac{\lceil \deg(U_i) \rceil}{\log n} \leq \sum_{i=1}^k \frac{\deg(U_i)}{\log n} + 1 = \frac{m}{\log n} + 1 \leq \frac{m}{\log n} + \frac{n}{\log n} = \frac{m+n}{\log n} \leq \frac{2m}{\log n}$$

there's also some near-constant processing time per each group, approximated at $O(\log \log n)$. For sparse graph $m \sim n$ Round Robin isn't ideal.

Matching

1. Matching problem: for undirected graph G = (V, E), **matching** H is subset of edges s.t. no two edges in Hshare an end-point. **Max matching**:

Goal 1: find a maximum cardinality matching.

Goal 2: if edges are weighted $(\forall e \in E \text{ weighs } w_e \geq 0)$, find maximum weight matching (summed edge weights).

2. Bipartite Matching: for undirected bipartite graph $G = (L \cup R, E)$ (left, right sets), $M \subseteq E$ is matching if each node appears in ≤ 1 edge in M. Perfect match**ing** if |M| = |L| = |R|.

3. Max-Flow problem: given undir G = (V, E) with special source s and target/sink t vertices, capacity on every edge $c: E \to \mathbb{R}_{>0}$, find s-t flow f of maximum value.

$$\forall e \in E : 0 \le f(e) \le c(e)$$

$$\forall v \in V \setminus \{s,t\} : \sum_{(u,v) \in E} f(u,v) = \sum_{(v,w) \in E} f(v,w)$$

Value of
$$f = \sum_{(s,u) \in E} f(s,u) = \sum_{(v,t) \in E} f(v,t)$$

maximum flow can be found in polynomial time O(nm).

- 4. **Theorem**: size of a maximum matching in G is at most, and at least (so equal) the value of a max flow in G' where $G' = (L \cup R \cup \{s,t\}, E' \cup \{L \times s, R \times t\})$ (edge from source to $\forall l \in L$ and from $\forall r \in R$ to sink t).
- 5. **Integrality theorem**: if k is an integer, then can assume the flow f is either 0 or 1.
- 6. Free vertex with respect to M is one not incident to any edge of a matching M in graph G.
- 7. Alternating path is a path P in G s.t. edges in M alternate with edges not in M.
- 8. Augmenting path: alternating acyclic path for matching M that starts and ends at distinct free vertices.
- 9. **Berge Theorem**: A matching M is a maximum matching iff there is no augmenting path with respect to M. **Proof**: (\Rightarrow) if M is maximum then there is no augmenting path w.r.t M. Can switch matching and nonmatchingedges along the pat, giving matching $M' = M \oplus P$ (XOR) with larger cardinality.
 - (\Leftarrow) Suppose there is a matching M^* with $|M^*| > |M|$. Consider graph H with edge set $M^* \oplus M$. Each vertex in H can be incident to ≤ 2 edges (one from M, one from M^*). So, CCs of H are alternating cycles/paths. More of edges are from M^* since $|M^*| > |M|$, so there's only 1 CC that's a path P for which both endpoints are incident to edges from M^* , but then P is alternating path w.r.t. M. □

Maximum Bipartite Matching

- Alternating Tree construction: partition into odd and even vertices using BFS. Take vertex y, now cases:
 y is free vertex not contained in T, then found an augmenting path.
 - 2) y is a matched vertex, neither y nor $\mathsf{mate}(y)$ are in T, grow the tree by adding such matched edge.
 - 3) $y \in T$ as an odd vertex, ignore successor y.
 - 4) $y \in T$ as an even vertex, can't ignore, odd length cycle, which is not possible in bipartite graphs.

- 2. Matching algorithm: as long as you find augmenting path, use it to augment the matching, else is maximum. Constructing alternating tree takes O(n+m). Since each matching augmentation increases the size of matching, and any matching has size $\leq \lfloor n/2 \rfloor$, will need $\leq \lfloor n/2 \rfloor$ augmentations, giving overall $O(n^2(n+m))$ runtime.
- 3. **Theorem**: Let M be a matching in graph G, and u be a free vertex w.r.t M. Now, let P be an augmenting path w.r.t M and $M' = M \oplus P$ be matching resulting from augmenting M with P. If there was no augmenting path starting at u in M, then there's no augmenting path starting at u in M'.

Proof by contradiction: FTSOC assume there is an augmenting path P' w.r.t M' starting at u. If P' and P are node-disjoint, P' is also an augmenting path w.r.t M, contradiction. Otherwise, let u' be the first node on P' that is also on P. Now $P'_1 \circ P_1$ is an augmenting path w.r.t. M, contradiction.

4. Naïve Bipartite Matching: Start with an empty matching and mark all vertices in L as free. For each free $r \in L$, grow an alternating tree until you either reach a free $y \in R$ (then augment along the discovered path and decrement the free count) or exhaust all possibilities. Repeat until no augmenting path exists.

```
Naïve bipartite max-matching
                                      O(n(n+m))
def BipartiteMatch(G): # G=(L ∪ R,E)
 for v in V: mate[v] = 0 # empty matching
 free = |L| # initialise to be unmatched
 # try each root until all matched
 for r in range(1, |L|) while free > 0:
   if mate[r] == 0: # if unmatched
     parent[v] = None for all v # cleanup
     Q = [r]; aug = False; # enqueue root
     # grow alternating tree till augment found
     while Q \neq [] and not aug: # or is max-matched
       x = Q.pop(0)
       for y in neighbours(x):
         if mate[y] == 0: # unmatched
           augment(parent, y) free -= 1 aug = True
           break # match and restart
         elif parent[mate[y]] is None:
           parent[y] = x # already matched
           Q.append(mate[y]) # keep growing
```

- 5. Hopcroft-Karp fast max-matching can find maximum matching in bipartite graph in $O(\sqrt{n}(n+m))$.
- 6. Ensure that path lengths all grow in each phase, so construct maximal set Π of disjoint augmenting paths w.r.t M. Denote $M \oplus \Pi = M \oplus (\oplus_{P \in \Pi} P)$.

7. Hopcroft-Karp fast max-matching algorithm:

- 1. Initialise $M = \emptyset$
- 2. Repeat until no augmenting paths exist:
 - ullet Build alternating tree rooted at unmatched vertices in L with BFS, basically a Trie (don't re-add nodes
 - For each unmatched node r_i in L: Run DFS rooted at r_i always moving down the BFS tree: using (u, v) edges with d(v) = d(u)+1, to find shortest augmenting path to the first unmatched vertex in R. Then XOR (augment) the path and remove its vertices to ensure vertex-disjoint paths.
- 3. Return M.

Runs in $O(\sqrt{n}(n+m))$, since each phase increases length of shortest augmenting path by 1, so after \sqrt{n} p hases by lemma will only have \sqrt{n} paths left, so overall augment $\leq 2\sqrt{n}$ times, each augmentation taking O(n+m) from BFS/DFS. \square

- 8. **Lemma**: Let M^* be a maximum matching and let M be any matching in G. If length of the shortest augmenting path w.r.t. M is k, then $|M^*| |M| \leq \frac{|V|}{k}$. **Proof**: consider graph $G^* = (V, M \oplus M^*)$. It contains $\geq |M^*| |M|$ augmenting paths with respect to M, each of length $\geq k$. Total length of these paths is |V|, so there are $\leq \frac{|V|}{k}$ of them. \square
- 9. **Lemma**: Let k be length of shortest augmenting path w.r.t M. Let Π be maximal set of shortest disjoint augmenting paths w.r.t. M (all of length k), then the shortest such path length w.r.t. $M \oplus \Pi$ is > k.

Proof: Consider shortest path P w.r.t $M \oplus \Pi$. If P doesn't intersect any path from Π then its length is > k as Π is maximal. Else suppose P intersects paths $P_1, ...P_t$ from Π . Combine these paths to construct t+1 new augmenting paths R_i w.r.t M, now $|R_j| \ge k$. Total length of t+1 paths is shorter than total length of paths P_i :

$$\sum_{i=1}^{t+1} |R_i| < |P| + \sum_{i=1}^{t} |P_i| = |P| + t \cdot k$$

This and $|R_i| \ge k$ implies that |P| > k. \square

10. For bipartite graph $G = (L \cup R, E)$ and matching M, define $G_M(L \cup R, E_M)$ as:

$$E_M = \{(u,v): \{u,v\} \in E \, \backslash \, M, u \in L, v \in R\} \cup \{(u,v): \{v,u\} \in M, v \in L, u \in R\}$$

Use this to find layered graph G_M^* constructed out of G_M . Let L^* be free vertices in L, and $d:V\mapsto N$ be distance d(v) from v to vertices in L^* . Then graph $G_M^*=(L\cup R,E_M^*)$ contains the following edges:

$$E_M^* = \{(u, v) : (u, v) \in E_M \text{ and } d(u) + 1 = d(v)\}$$

- 11. **Lemma**: every path in G_M^* that starts in L^* is a shortest path in G_M .
- 12. **Perfect matching** covers all vertices from L.

13. Hall's Theorem: A bipartite graph $G = (L \cup R, E)$ has a perfect matching iff for all sets $S \subseteq L : |\Gamma(S)| \ge |S|$.

Here, $\Gamma(S)$ is the set of vertices in R that have a neighbour in S. $I.H: \forall S \subseteq L \land |\Gamma(S)| \ge |S| \rightarrow G$ perf matched.

Proof: (\Rightarrow) this condition is necessary, as otherwise not all nodes would match.

 (\Leftarrow) For |L| > 1: pick arbitrary $v \in L$ that has at least 1 neighbour $u \in R$. Match and remove v, u and their incident edges. Now find matching of size |L| - 1 in smaller graph induced on $L \setminus \{v\}, R \setminus \{u\}$ by induction.

Won't work if $\exists Q \subseteq L \setminus \{v\}$ has < |Q| neighbours in $R \setminus \{u\}$, take such smallest set Q. Then $|\Gamma(Q)| = |Q|$, so $\forall U \subseteq Q : |\Gamma(U)| \ge |U|$ for the I.H. to hold.

By induction, \exists perfect matching between $Q, \Gamma(Q)$. For $\forall A \subseteq L \setminus Q$, by I.H., $A \cup Q$ has $\geq |A| + |Q| = |A| + |\Gamma(G)|$ neighbours in R. So A has $\geq |A|$ neighbours in $R \setminus \Gamma(Q)$, so \exists perfect matching between $L \setminus Q$ and $R \setminus \Gamma(G)$. \square

- 14. **k-Regular** bipartite graph: $\forall v \in V : \deg(v) = k$.
- 15. **Lemma**: For every $d \ge 1$, every d-regular bipartite graph has a perfect matching.

Proof: take any vertex set $S \subseteq L$. Since G is d-regular, cumulative degree $\sum_{u \in S} \deg(u) = d \cdot |S|$, so there are $\Gamma(S) \ge d \cdot |S|$ neighbours, but # edges incident to $\Gamma(S)$ is $\sum_{u \in \Gamma(S)} \deg(u) = d \cdot |\Gamma(S)|$, yielding $|\Gamma(S)| \ge |S|$. \square

16. **Lemma**: For every $d \geq 1$, every d - regular bipartite graph has exactly d edge-disjoint perfect matchings. **Proof**: by Hall's theorem, every d-regular bipartite has a perfect matching. Remove one such matching and obtain (d-1)-regular bipartite graph. Repeat to recursively find d such edge-disjoint perfect matchings. \square

Weighted Bipartite Matching, VC

- 1. Vertex Cover (VC) is set C of vertices s.t. all edges $e \in E$ are incident to at least one vertex of C. No edge is completely contained in $V \setminus C$ (outside of cover).
- 2. Weak duality: any vertex cover is at least as large as the maximum size matching.
- 3. **König's Theorem**: for any bipartite graph, maximum size of a matching is equal to the minimum size of a VC. **Proof**: fix a maximum matching M. Let Q_L be all vertices reachable in G_M from free vertices in L. Then $C^* = (L \setminus Q_L) \cup (R \cap Q_L)$ is a VC with $|C^*| = |M|$.

All vertices in L are in $L \cap Q_L$. All free vertices in R are in $R \setminus Q_L$ as otherwise would get augmented path w.r.t M contradicting M's maximality.

There's no edge from M between vetex $x \in L \setminus Q_L$ and $y \in R \cap Q_L$, as otherwise x would be in Q_L (matched). So, every vertex in C^* is matched in M and corresponding matching edges are distinct, so $|C^*| \leq |M|$.

- 4. Weighted Bipartite matching: undirected bipartite graph $G=(L\cup R, E)$, each $e=(l, r) \in E$ has edge weight w(e) > 0.
- 5. Assignment problem: find a matching of maximum weight (sum of weights). Wlog assume |L| = |R| = nand \exists edge between every pair of nodes $(l, r) \in L \times R$.
- 6. **Tight subgraph** $H(\vec{x})$ of G only contains edges that are **tight** $(x_u + x_v = w(e))$ w.r.t the node weighting \vec{x} .
- 7. Node-weighing \overrightarrow{x} : each $v \in V$, has weight $x_v \geq 0$. Invariant: node weights dominate edge weights as:

$$x_u + x_v \ge w(e)$$
 for every edge $e = (u, v)$.

Try to compute perfect matching in $H(\vec{x})$. Matching weight is total node weight $X = \sum_{v \in V} x_v$, optimal if:

$$\sum_{(u,v)\in M} w(u,v) \le \sum_{(u,v)\in M} (x_u + x_v) \le X = \sum_{v\in V} x_v$$

8. Naïve re-weight: to reduce total node weight X = $\sum_{v} x_v$ while maintaining the invariant $x_u + x_v \ge w(u, v)$ for all $(u, v) \in E$, and ideally increase size of the maximum matching in $H(\vec{x})$.

Let $S \subseteq L$ be a subset violating Hall's condition: $|\Gamma(S)| < |S|$ where $\Gamma(S)$ are the neighbours of S in $H(\vec{x})$.

- Increase node weights by δ for each $v \in \Gamma(S)$ and decrease by δ for each $u \in S$.
- This makes edges from S to $R \setminus \Gamma(S)$ strictly lighter (may become tight later), without violating invariant.
- All tight edges remain tight; none become invalid.
- Eventually, new edges may become tight and be added to $H(\vec{x})$, increasing its connectivity and potential matching size.

After changing weights, there's at least 1 more edge edge leaving $L \cap Q_L$, after $\leq n$ re-weights can do augmentation. Re-weighting takes $O(n^2)$, augmentation O(n), so overall $O(n^4)$. Can do better.

- 9. **Theorem**: finding maximum wight matching in bipartite graphs can be done in $O(n^3)$ time.
- 10. Hungarian Algorithm: find a minimum-weight perfect matching taking $O(n^3)$ time.
 - 1) Reduce to max-weight perfect matching: original cost of matching M is $W(M) = \sum_{e \in M} w(e)$. If M^* is any other perfect matching, then $\sum_{e \in M^*} w(e) = W(M^*) \ge 1$ $W(M) = \sum_{e \in M} w(e)$. Now swap edge weights from w to -w, to get $\hat{W}(M^*) = -W(M^*) \le -W(M) = \hat{W}(M)$.
 - 2) Ensure all weights are non-negative. Swap weights from w(e) to $w(e) = \min_{e'} w(e')$ where:

$$(1) \ \hat{w}(e) = w(e) = \min_{e' \in E} w(e') \ge 0$$

$$(2) \ \hat{w}(M^*) = W(M^*) - |M^*| \cdot \min_{e'} w(e') \le W(M) - |M| \cdot \min_{e'} w(e') = \hat{W}(M)$$

Add additional vertices to make both sides of the same size. Add new edges to make G complete bipartite.

Max-matching in general graphs

- 1. Construct alternating tree T, now since G = (V, E) is not necessarily bipartite, can no longer ignore the case where x, y are on the same even layer, and $(x, y) \in E$. Let w be their least common ancestor (LCA).
- 2. **Blossom** is the odd cycle induced by alternating tree paths $w \rightsquigarrow x, w \rightsquigarrow y$ and edge (x, y). Here, even vertex w is the **base** of the blossom.
- 3. Shrinking blossoms: If during alternating tree construction we discover a blossom B, replace G with G' = G/B obtained by replacing all vertices in B with a supervetex b (*shrink*). Then, find an augmenting path through that contracted node in G', augment path, and replace supervertex b with original vertices in B (*lift*).
 - Initialize. Set all vertices free, mate[v] = 0.
 - For each free root r. Start BFS on an alternating tree: label r even (d[r] = 0), enqueue.
 - Explore x. For each unexamined neighbour y:
 - (A) y even in tree: blossom found \rightarrow contract the oddcycle into b, update labels/distances.
 - (B) y odd and matched: grow tree via $y \to z = \text{mate}[y]$, label z even, enqueue.
 - (C) y odd and free: augmenting path found, **stop BFS**.
 - Augment & expand. Reconstruct via parent pointers, flip matches, expand any contracted blossoms in reverse.
 - Repeat. Continue with next free r until no augmenting path exists.

Runs in
$$O(n^2(n+m))$$
, can $O(n(n+m))$ or $O(\sqrt{n}(n+m))$

- 4. Tree edges of T connected to node u in B become tree edges in T' connecting u to b. Matching edge (stem) connecting node u not in B to a node in B becomes matching edge in M'. Nodes connected in G to at least one node in B become connected to b in G'.
- 5. **Lemma 1**: matching M in G induces matching M' in G':

$$M' := \{\{u, v\} : \{u, v\} \in M \land u, v \in V \setminus B\}$$

$$\cup \left\{ \left\{ u,b \right\} : \left\{ u,x \right\} \in M \land u \in V \setminus B \land x \in B \right\}$$

Every node in G' has at most 1 incident matching edge. All nodes in $V \setminus B$ have same # matching edges incident in M in G, so matching condition fulfilled in them. For node b, can only have at most 1 incident matching edge since only node in blossom that can have incident matching edge is the base w.

6. **Lemma 2**: Current alternating tree T w.r.t. matching M induces alternating tree T' in G' w.r.t matching M':

For every edge $\{u, v\} \in T$ and $u, v \in V \setminus B$, have corresponding $\{u,v\} \in T'$; for every such edge with $u \in V \setminus B$ and $v \in B$, introduce edge $\{u, b\} \in T'$. Node b becomes even node in T'; if root r of T is contained in B then b becomes root of T'.

Proof: Must show (i) T' is acyclic, (ii) connected, and Max-matching in Planar graphs (iii) every root-leaf path alternates.

- (i) Acyclicity. If T' contained a cycle, expanding the contracted node b back to the blossom B would yield a cycle in T, contradicting its tree property.
- (ii) Connectivity. Contracting the connected subgraph B to a single node b cannot disconnect T, so T'remains connected.
- (iii) Alternation. On any root-leaf path in T':
- Edges whose endpoints lie both outside b correspond exactly to those in T and thus alternate.
- If the path uses an edge (u, b) and then (b, v), by construction $(u, b) \in M'$ and every other edge incident to b is not in M', so these two also alternate.

Hence T' is an alternating tree in G' w.r.t. M'.

7. **Lemma 3**: If G contains augmenting path w.r.t M starting at root r, then G' contains an augmenting path w.r.t M' starting at r (or b if $r \in B$).

Proof: Let P be $r \rightsquigarrow s$ augmenting path in G w.r.t M.

Case 1. $P \cap B = \emptyset$. Then P also lies entirely in G' and remains augmenting w.r.t. M'.

Case 2. $P \cap B \neq \emptyset$. Since every vertex of $B \setminus \{w\}$ is matched, $s \notin B$. Let x be the last vertex of P in B, and let y be its successor on P. The subpath P_{xs} alternates (starting with a non-matching edge) and ends at free s, so in G' it induces an augmenting path from b to s.

If $r \in B$, we are done. Otherwise, let S be the alternating "stem" in T from r to the base w. Flipping M along S gives a matching M^* of the same size and an augmenting path ending at $w \in B$, which reduces to the previous subcase. Prepending S then yields an augmenting path in G' starting at r.

8. Lemma 4: If G' contains augmenting path w.r.t M'starting at r (or b if $r \in B$), then there exists augmenting path in G w.r.t M starting at r.

Proof: Let Q' be $u \rightsquigarrow s$ augmenting path in G' w.r.t M' where u = r (or u = b if $r \in B$).

Case 1. $Q' \cap \{b\} = \emptyset$. Then Q' lies entirely in G and is augmenting w.r.t. M.

Case 2. Suppose $b \in Q'$ but $r \notin B$. Then Q' traverses the two edges $(g,b) \in M'$, $(b,h) \notin M'$ so for some $b_q \in B$, it holds that $\{g,h\} = \{mate(w), b_q\}$. Since B contains an alternating path from w to b_q , splicing that path in place of the vertex b in Q' produces an augmenting path in G w.r.t. M.

Case 3. $r \in B$. Then u = b, and the same "splice-inthe-stem" argument connects r via an alternating path in B to the neighbour q of b on Q', producing an augmenting path in G from r to s.

1. Planar Separator Theorem: let G = (V, E) be simple planar graph. One can partition V into $A, B, S \subseteq V$:

$$|S| \le 2\sqrt{2n} \qquad \frac{n}{3} \le |A|, |B| \le \frac{2}{3}n$$
 s.t. there is no edge between A,B in G . Can structure

nodes in a $\sqrt{n} \times \sqrt{n}$ grid. Take $S = O(\sqrt{n})$, as the constants are unimportant, have impact only on runtime. Partition can be found in O(n) time.

2. Since A, B, S are small, solve recursively: find maxmatching in subgraphs of G induced by A, then by B, and find augmenting paths through S.

$$T(n) = T(|A|) + T(|B|) + |S| \cdot O(n)$$

$$T(n) \le \max_{\frac{n}{3} \le k \le \frac{2n}{3}} \{ T(k) + T(n-k) + O(n^{1.5}) \}$$

$$T(n) \le 2T(2n/3) + O(n^{\frac{3}{2}}) = \Theta(n^{\log_{3/2} 2}) \simeq \Theta(n^{1.71})$$

By induction: for constant c, have $T(n) \leq c \cdot n^{1.5}$. For any $\frac{n}{3} \le k \le \frac{2n}{3}$ have, differentiate to prove:

$$k^{1.5} + (n-k)^{1.5} \le \left(\frac{n}{3}\right)^{1.5} + \left(\frac{2n}{3}\right)^{1.5} = \left(\frac{1}{3^{1.5}} + \frac{2^{1.5}}{3^{1.5}}\right) n^{1.5}$$

$$T(n) \le c \cdot (k^{1.5} + (n-k)^{1.5}) + \alpha \cdot n^{1.5} \le c \cdot n^{1.5} \cdot \frac{1+2^{1.5}}{3^{1.5}} + \alpha \cdot n^{1.5}$$

$$\text{Choose } c \ge \frac{3^{1.5} \cdot \alpha}{3^{1.5} - 1 - 2^{1.5}} \simeq 3.8 \cdot \alpha. \quad \Box$$

- 3. Weighted Planar Separator Theorem: add weight function $w: V \to R_{>0}$. Any subset $U \subseteq V$ weighs $W(U) = \sum_{u \in U} w(u)$. Total weight W := W(V), now: $|S| \le 4\sqrt{n}$ $W(A), W(B) \le \frac{2}{3}W$
- 4. Minimum Vertex Cover (Min-VC): find vertex cover of minimum cardinality. NP-hard, takes $2^{O(\sqrt{n})}$.
- 5. Brute-force Min-VC algorithm: for every subset $C \subseteq V$, check if C is a VC. Out of all sets C that form a VC, select the smallest one.

Claim 1: the algorithm will find minimum-VC in G. Claim 2: runtime $\sum_{n=1}^{\infty} O(n+m) = 2^n \cdot O(n+m) = 2^{O(n)}$

Proof: consider all 2^n subsets $C \subseteq V$, for each subset need O(n+m) time to determine if C is a VC.

6. Planar Separator Min-VC algorithm:

Outline: For each $U \subseteq S$, find min-VC C_U s.t. $C_U \cap S =$ U, and choose overall min-VC over all such $U \subseteq S$.

- 1) $C_U \cap S = U$ if \forall edge e with both endpoints in Shas ≥ 1 vertex from U, then there's ≥ 1 VC C of G s.t. $C \cap S = U$, e.g. $C = U \cup A \cup B$, find min such VC.
- 2) Let $G\langle U\rangle$ be G with all edges incident to U removed. VC has to contain vertices $\forall u \in U$ and set Q of all $v \in A \cup B$ incident to at least 1 vertex in $S \setminus U$, so add Q, remove all edges incident on it.
- 3) Claim: C is a vertex cover in $G(U \cup Q)$ iff $C \cup U \cup Q$ is a VC in G. Isolates all $s \in S$, ignore them.

Continue recursively.

7. For each subset $U \subseteq S$, have $T_U(n) \leq \Theta(n) + T(|A|) +$ T(|B|). Total running time is:

$$T(n) = \sum_{U \subseteq S} T_U(n) \leq 2^{|S|} \left(\Theta(n) + 2T(2n/3)\right) \leq 2^{O\left(\sqrt{n}\right)} \cdot 2T(2n/3) \leq 2^{O\left(\sqrt{n}\right)}.$$

Eulerian Paths & Hamiltonian Cycles

- 1. **Eulerian tour** visits each edge exactly once and returns to the starting vertex. *G* is **Eulerian** if it admits such tour. **Eulerian trail** need not return.
- 2. **Theorem**: Let G be *undirected* connected graph, may have parallel edges and self-loops. Then G has *Eulerian* tour iff degree d(v) is even for every $v \in V$.

Proof: (\Rightarrow) Let in(v) be # edges incident to v used by C to enter v, and out(v) - # to exit v. Now in(v) = out(v) as tour must enter and exit through different edge each time. Hence, d(v) must be even for every vertex $v \in V$.

- (⇐) Let G be connected graph with even degree $\forall v \in V$ with smallest number of edges s.t. FTSOC G is not Eulerian. Consider trail C starting and ending at v, visiting nodes through distinct edges until can't proceed anymore. Delete this closed trail decreases each vertex degree by an even number, but $G' = G \setminus C$ now has add vertices of even degree. G' is smaller than G, each CC of G' has an Euleerian tour, so combine with C to get Eulerian tour of G. Contradiction. \Box
- 3. **Theorem**: Let G be *undirected* connected graph. Then G has an *Eulerian trail* iff every vertex except two vertices have even degree.
- 4. Find Eulerian tour/trail algorithm: assume G connected, all vertices even degrees. Start tour at some vertex v. Let $G' = G \setminus C$. Now $\forall v' \in V' : \deg(v')$ even, recursively find Eulerian tours C'_i in every CC of G'.

Combine tours $C \cup C'_i$. Since G is connected, both must share a vertex u. Traverse tour C until reach vertex u, then traverse entire tour C'_i starting and returning to at/to u Continue traversal of C from u. O(|V| + |E|).

- 5. **Theorem**: Let G be **directed** connected graph. Then G has **Eulerian tour** iff $\forall v \in V$: in-deg(v)=out-deg(v).
- 6. **Hamiltonian Cycle** visits each vertex exactly once. *G* is **Hamiltonian** if it admits such cycle.
- 7. Ore Theorem: Let G be connected graph on $n \geq 3$ vertices. If non-adjacent $\forall u, v \in V : d(u) + d(v) \geq n$ then G is Hamiltonian.

Proof by contradiction: Let $n \geq 3$ be smallest number for which the claim doesn't hold. FTSOC let G be non-Hamiltonian graph on n vertices with maximal number of edges which satisfies theorem conditions.

Then \exists pair of non-adjacent vertices connected by a Hamiltonian path in G. If G was complete graph on $n \geq 3$ vertices, then it had Hamiltonian cycle, so G isn't complete, adding any edge will make it Hamiltonian.

Let $u_1, ... u_n$ be such path. Since u_1, u_n are non-adjacent in G, then $d(u_1) + d(u_n) \ge n$. By pigeon-hole principle,

there exists index $i \in \{2, 3, n - 1\}$ s.t u_1 is adjacent to
u_i and u_n is adjacent to u_{i-1} .
Then $u_i - u_1 - \dots - u_{i-1} - u_n - u_{n-1} - \dots - u_i$ is Hamiltonian

8. **Dirac Theorem**: Let G be a graph on $n \geq 3$ vertices. If $\min_{v \in V} d(v) \geq n/2$ then G is Hamiltonian.

Proof follows from Ore's Theorem. \Box

cycle. Contradiction.