
Lecture Notes
CS131

Part 1

General

1. Two’s complement: x mod 2N

2. Decimal to Binary: keep halving the number, noting
remainders. Take digits from end to start.

3. Division algorithm: a, b ∈ Z, b ̸= 0 → ∃ unique q, r ∈ Z
(quotient, remainder) s.t. a = qb+ r, 0 ≤ r < |b|

4. b ∈ Z divides a ∈ Z if a = qb for some q ∈ Z.

5. gcd(0, n) = n∀n > 0

6. Congruence a ≡ b (mod n) if a = b+ kn, k ∈ Z

7. Every rational number has a co-prime number with
gcd(m,n) = 1, n ≥ 1 and inverse (q · q−1 = 1)

8. Algebraic number n ∈ R if solution of a polynomial
equation with rational coefficients. Otherwise called
Transcendental

9. U ∈ R is the least upper bound (supremum) of S if
U is an upper bound of S and U ≤ u for every upper
bound u of S.

10.L ∈ R is the greatest lower bound (infimum) of S if L
is a lower bound of S and L ≥ l for every lower bound
l of S

11. Complex numbers C in form of a+ ib, a, b ∈ R, i2 = −1
It holds: a + ib = c + id ⇔ a = c, b = d, separating
into real (a, c) and imaginary (b, d) parts. i isn’t in the
imaginary part! Complex conjugate: a+ ib = a− ib
The real part of z ∈ C is (z+z)

2 , imaginary part is (z−z)
2i

12.Polar Coordinates: x+ iy = r(cos θ + i sin θ), where
r =

√
x2 + y2 is the modulus of x + iy, denoted as

|x+ iy|, representing distance between coordinate and
origin, and tan θ = y

x , called the argument, with prin-
cipal argument satisfying −π < θ ≤ π

Theorems and Important

13 Axioms of R
1. Commutativity x+ y = y + x
2. Associativity x+ (y + z) = (x+ y) + z
3. Distributivity x.(y + z) = x.y + x.z
4. Additive ident. ∃0|x+ 0 = x
5. Multiplicative id. ∃1|x.1 = x
6. id’s 4,5 are unique 1 ̸= 0
7. Every n ̸= 0 ∈ Z has additive inverse: x+ (−x) = 0
8. Every n ̸= 0 ∈ Z has multipl. inverse: x.x−1 = 1
9. Transitivity: x, y ∧ y < z → x < z
10. Trichotomy law: x < y or y < x or x = y
11. Preserv. ordering under add. x < y → x+ a < y + a
12. Pres. ordering under mult. a > 0∧x < y → x.a < y.a
13. Completeness: Every non-empty subset that bounded
above has a least upper bound

Properties of the modulus. For any z, w ∈ C:

1. |z| = |z̄|,
2. |z| =

√
zz̄,

3. zz̄ = |z|2,
4. |zw| = |z||w|,
5. |z + w| ≤ |z|+ |w| (the triangle inequality),
6. ||z| − |w|| ≤ |z − w|.

Theorem ∄x ∈ Q s.t. x2 = 2.
Assume opposite, show that x = a

b with gcd(a, b) = 1,
then show that a, b even hence contradicting gcd = 1

De Moivre’s Theorem For any integer n,
(r(cos θ + i sin θ))n = rn(cosnθ + i sinnθ)

The Archimedean Property of the Reals
Given any ϵ ∈ R+ there exists n ∈ N such that nϵ > 1

Fundamental Theorem of Algebra Every polynomial
equation of degree n with complex coefficient has exactly
n solutions in C

Euclidean Algorithm: gcd(m,n): For i = 1, 2, 3..
if ri = 0: output ri−1; if ri ̸= 0, divide ri−1 by ri and let
ri+1 be the remainder.

1



Part 2

Vectors

1. R2 = {(x, y)|x, y ∈ R} (Just points in a plane)

2. a+ b = (a1 + b1, a2 + b2) and λa = (λa1, λa2)

3.
−−→
OP ≡ p = (p1, p2) ∈ R2 where O-origin, P -(p1, p2).
Vector p is called position vector of point P. Two
vectors are equivalent if they have same length and di-
rection. Given A,B have position vectors a, b, then−−→
AB = b− a.

4. Length |a| =
√

a21 + a22. Unit vector length is 1. Dis-
tance between a and b = |b− a|. To find unit vector u,
parallel to v, use u = v

|v|

5. Scalar(dot) Product: a.b = a1b1 + a2b2 = |a||b| cos θ.
Vectors are orthogonal(perpendicular) if their scalar
product is 0 and parallel if 1.

Linear Combinations

1. If u, v ∈ R2, α, β ∈ R, then vector of form αu+ βv is a
linear combination of u, v. (6, 6) = 1·(0, 3)+3·(2, 1).
If u, v non-parallel, then linear combination represents
a diagonal of a parallelogram. Linear combination
with itself is called scaling: 2 · v.

2. Span of U = {α1u1 + ... + αmum|α1, ...αm ∈ R} (set
of all linear combinations of its elements). Span of
{(1, 0), (0, 1)} = R2. If one of the components is 0 in
both u, v, then any vector with same component being
0 is a linear combination of u, v: (1, 0, 4), (8, 0, 5).

3. Subspace of Rn is non-empty S ⊆ Rn with
1)u, v ∈ S → u + v ∈ S, 2)u ∈ S, α ∈ R → αu ∈ S.
Closure under addition and scalar multiplication. Ev-
ery subspace of Rn contains a zero vector. If Nonempty
finite U ⊆ Rn, then span of U is subspace of Rn, called
subspace spanned (generated) by U .

Linear Independence

1. Set {u1, ...um} ⊆ Rn is linearly dependent if
∃α1, ...αm ∈ R not all zero s.t. α1u1 + ...+ αmum = 0,
linearly independent otherwise. Any set containing 0 is
linearly dependent. Set S is linearly dependent if one
of the vectors is a linear combination of other vectors
in S. ↓

2. Predecessor Theorem: set u1, ...um of nonzero vec-
tors is linearly dependent iff some ur is a linear com-
bination of its predecessors u1, ...ur−1. UNDER-
STAND THE PROOF

Basis and Dimension

1. Let S be subspace of Rn, then a set of vectors is
called a basis if it’s linearly independent and spans S:
{(0, 1), (1, 0)} is basis for R2, moreover, if it’s 1, with
everything else 0 like above, it’s a standard basis.

2. Theorem: Let S be subspace of Rn, if set {u1, ..., um}
spans S then any linearly independent subset of S con-
tains at most m vectors. UNDERSTAND THE
PROOF

3. Dimension of subspace of Rn is the number of vec-
tors in a basis for the subspace. Any two bases for a
subspace S have the same number of elements.

4. Let {v1, ...vm} be set of nonzero vectors that spans m-
dimentional subspace S of Rn. Then removing each
linear combination of its predecessors vi will leave a ba-
sis for S. The basis will have exactly m vectors, any
subset of S with > m vectors is linearly dependent.

Matrix Algebra

1. A matrix A of order m× n is an array of numbers ar-
ranged in m rows and n columns and usually written
as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 · · · · · · amn

 or A = [aij ]m×n.

2. Column matrix: m × 1, row matrix or row vector:
1 × n. Zero matrix Om×n - all elements are 0. Neg-
ative of A is matrix −A = [−aij]m×n. Square ma-
trix: m = n. Diagonal matrix diag[a11, ..., ann]: only
elements a11, ...ann are non-zero. Identity matrix is
square diagonal matrix with 1’s as entries.

3. A + B = [aij + bij ]m×n, only defined for same order
matrices. Scalar multiplication λA = [λaij ]m×n. Noth-
ing special in properties of these operations.

4. Multiplication A = [aij ]x×y, B = [bij ]y×z.AB = [cij ]x×b

Multiply rows of left matrix by columns of the
right one. Matrix multiplication isn’t commutative:
AB ̸= BA

5. Properties of matrix multiplication/addition:
1. IA = A = AI 2. OA = O = AO
3. AxAy = AyAx 4. A+ (−A) = O

2



Matrix Determinants and Inverse

1. Transpose AT is matrix A with swapped rows and
columns, so ([aij ]m×n)

T = [aji]n×m. Properties:
1. (AT )T = A 2. (A+B)T = AT +BT

3. (λA)T = λAT 4. (AB)T = BTAT

2. Inverse: If A,B are square, have same order, then an
inverse of A, denoted A−1 is B if AB = I = BA. An
inverse is unique. A−1 = B → B−1 = A.

3. The Determinant of 2 × 2 matrix A =

[
a b
c d

]
is de-

fined to be (ad − bc) and is denoted by det(A) or |A|.
A 2 × 2 matrix A is invertible iff its determinant is
nonzero. |A| = |AT |, |AB| = |A||B|.

4. System of linear equations can be written as[
a11 a12
a21 a22

] [
x1
x2

]
=

[
b1
b2

]
≡

{
a11x1 + a12x2 = b1

a21x1 + a22x2 = b2
Can (1) interchange two rows; (2) multiply a row by
a nonzero number; (3) add a multiple of one row to

another in the augmented matrix

[
a11 a12 b1
a21 a22 b2

]
.

5. Matrices A ∼ B are row equivalent if A can be trans-
formed into B using finite number of elementary row

operations. Row echelon form:

[
x1 x2 x3

0 x4 x5

0 0 x6

]
.

Elementary matrix E is obtained
from I by applying basic row operations, and is used
for matrix transformations. (1)Eij(−µ)Eij(µ) = I,
(2)EijEji = I; and (3)Ei(

1
λ)Ei(λ) = I, all of which are

commutative.

6. 3×3 determinant
∣∣∣a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣: choose a row, mutliply

by det of 4 numbers excluded by same row and column:

a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
Remember about alternating checkerboard signs!

7. If A = [aij ] is n × n matrix then ijth minor Mij of
A is determinant of (n− 1)× (n− 1) matrix obtained
by deleting ith row and jth column from A. The ijth

cofactor Aij = (−1)i+jMij (minor with alternating
signs). Determinants are recursive with base case 1×1.

8. If matrix B obtained from A: (1) multipy a row of A
by number λ → |B| = λ|A|, (2) Interchange two rows
of A → |B| = −|A|, (3) Add a multiple of one row of
A to another → |B| = |A|.

9. Adjoint matrix is the transpose of a matrix of cofac-
tors of A. If |A| ≠ 0 then it’s invertible, and the matrix
inverse A−1 = 1

|A|adj(A)

10. Set of n vectors in Rn is linearly independent (there-
fore a basis) iff it is the set of column vectors of a
matrix with nonzero determinant.

Linear Transformations

1. Function T : Rm → Rn is a linear transformation
if ∀u, v ∈ Rm, λ ∈ R : T (u + v) = T (u) + T (v) and
T (λu) = λT (u) (preservation under addition and scalar
mutliplication)

2. If T : Rm → Rn is a linear transofrmation, then
T (0) = 0. In the exam, try to substitute 0, and check
whether the output is also 0 when determining whether
it’s a linear transformation.

3. Let u ∈ R2 be nonzero vector, if x ∈ R2, projection of
x onto u is vector Pu(x) with: (1) Pu(x) is a multiple of
u and (2) x − Pu(x) is perpendicular to u. Projection
is a linear transformation, and so is rotation of a point
an angle about the origin.

4. Let M be n × m matrix, then function T : Rm → Rn

defined by T (x) = Mx for every x ∈ Rm is a linear
transformation. (Every Matrix Defines a Linear Trans-
formation)

5. Let V = {v1, ..., vn} be basis for Rn. If x ∈ Rn then
x = α1v1 + ... + αnvn, which is a unique expansion,
denoting coordinates of x with respect to basis V .
Identity transformation I(x) = x for all x ∈ Rn

6. Matrix of linear transformation: for basis V,W , find
the image of T : V → W , as a linear combination of
vectors in W , and put the coefficients as columns in the
resulting in a transition matrix A. When changing
the basis, of u from V to W , multiply matrix A by
coordinates of u with respect to V , and the result will
be the coordinates of u with respect to W .

7. Let square matrix An×n and r a non-zero column vec-
tor. Ar = λr, where λ ∈ R is called Eigenvalue and r
is an Eigenvector. (When pre-multiplied by A, vector
r doesn’t change direction). A number λ is an eigen-
value of the matrix A iff |A − λI| = 0 (characteristic
equation) of A, and is a polynomial of degree n. Eigen-
values may be complex.

8. For An×n, if V
−1AV = D =diag(λ1, ...λn), for Vn×n

with columns [v1, ..., vn], then those vi are eigenvectors
of A and λi are corresponding eigenvalues.
To find P,D: solve characteristic equation, find eigen-
values, express vectors as variable times a vector of
coefficients, those coefficients will become columns in
P , and D is a diagonal matrix of those eigenvalues.
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Part 3

Sequences

1. Sequences are infinite lists of numbers defined by a for-
mula of the nth term, like (2n) = (1, 2, 4, 8...) or recur-
sively: F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn (Fibonacci)

2. Sequence (an) of real numbers converges to a limit
l ∈ R if ∀ϵ > 0.∃N : |an − l| < ϵ for all n > N . If
it converges, then lim

n→∞
an = l or an → l. All constant

sequences converge.

3. Combination Rules for Convergent Sequences
Convergent sequences an → α, bn → β, cn → γ, then:

Sum rule an + bn → α+ β

Scalar multiple rule λan → λα (for λ ∈ R)
Product rule anbn → αβ

Reciprocal rule 1/an → 1/α (α ̸= 0)

Quotient rule bn/an → β/α (α ̸= 0)

Hybrid rule bncn/an → βγ/α (α ̸= 0)

4. Sequence an is bounded above if ∃U.∀n : an ≤ U ,
bounded below ∃L.∀n : an ≥ L, and is bounded
if such U,L exist. A sequence an is increasing if
∀n : an+1 ≥ an, and decreasing if ∀n : an+1 ≤ an.
Subsequence of a sequence is obtained by deleting
some terms.

5. Basic properties of convergent sequences
1) A convergent sequence has a unique limit
2) an → l, then every subseq. of (an) also conv. to l
3) If an → l then |an| → l. ↓ Squeeze rule ↓
4) an → l ∧ bn → l and ∀n : an ≤ cn ≤ bn, then cn → l
5) Conv. seq. is bounded: ∃B > 0.∀n : −B ≤ an ≤ B
6) Any increasing sequence, bounded above and de-
creasing seq. bounded below, converges.

6. Sequence (an) diverges to infinity if ∀K ∈ R.∃N |n >
N ⇒ an > K. If it does diverge, we write an → ∞. A
non-convergent, non-divergent sequence oscillates.

7. Basic Convergent Sequences

(1) lim
n→∞

1

np
= 0 for any p > 0

(2) lim
n→∞

cn = 0 for any c with |c| < 1

(3) lim
n→∞

c1/n = 1 for any c > 0

(4) lim
n→∞

npcn = 0 for p > 0 and |c| < 1

(5) lim
n→∞

cn

n!
= 0 for any c ∈ R

(6) lim
n→∞

(
1 +

c

n

)n
= ec for any c ∈ R

Recurrences

1. Recurrence is a rule which defines each term of a se-
quence using the preceding terms.

2. Linear recurrences with constant coefficients of the
form: xn + a1xn−1 + . . . + akxn−k = f(n), (a: con-
stant, f : function). If values of first k terms are given,
then it’s a unique sequence (xn). Homogeneous re-
currence: ∀n : f(n) = 0.

3. General solution of recurrence xn + axn−1 + bxn−2 = 0
when b = 0 is: xn = λnA. And its Auxiliary equation
is: λ2 + aλ+ b = 0. Let λ1, λ2 be its roots.
If λ1 ̸= λ2 then xn = Aλn

1 +Bλn
2

If λ1 = λ2 then xn = Aλn
1 +Bnλn

2

Use first 2 terms to find A,B by substitution.

4. Non-homogeneous recurrence:
(1) Find general solution xn = hn of homogeneous re-
currence (=0),
(2) Find any particular solution xn = pn of the original
recurrence (= f(n) (replace xn with a polynomial of
degree of f(n), like xn = Cn+D)
(3) General solution will be xn = hn + pn.
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Series

1. Series
∑

an. is a pair of sequences consisting of (an) →
sequence of terms, and (sn) = a0+ . . .+an → sequence
of partial sums.

2. If (sn) of partial sums converges to s, then series
∑

an
converges to the sum s:

∑∞
n=0 an = s, diverges other-

wise. Try to simplify the expression for an, then find sn,
and usually subtract one from another to end up with
an easy solution, and take a limit of that expression to
find the answer.

3. Sum Rule:∑
an → α and

∑
bn → β then

∑
(an + bn) → (α+ β)

Multiple Rule:
if
∑

an → α and λ ∈ R, then
∑

λan → λα
Other rules:
If series

∑
an converges, then sequence (an) → 0

If series
∑

|an| converges, then
∑

an also converges.

4. Comparison Test: Suppose ∀n : 0 ≤ an ≤ bn, then
if
∑

bn converges then so does
∑

an
if
∑

an diverges then so does
∑

bn

5. Ratio Test: if |an+1

an
| → L then

if 0 ≤ L < 1 then
∑

an converges
if L > 1 or L = ∞ then series

∑
an diverges

if L = 1 then test is inconclusive.

6. Basic Convergent Series
(1)

∑∞
n=0 r

n = 1
1−r for any r with |r| < 1.

(2)The series
∑ 1

nk converges for any k > 1.

(3)The series
∑

nkrn converges for k > 0 and |r| < 1.
(4)

∑∞
n=0

cn

n! = ec for any c ∈ R.
However,

∑ 1
nk diverges ∀k ≤ 1

7. Power Series of form
∑

anx
n for n ≥ 0.

Lemma: If
∑

anR
n converges for some R ≥ 0, then∑

anx
n converges ∀|x| < R

8. R ≥ 0 is radius of convergence of
∑

anx
n if this

power series converges ∀|x| < R and diverges for
∀|x| > R. If series converges ∀x then R = ∞. Ra-
dius of convergence defines function f : (−R,R) → R
given by f(x) =

∑∞
n=0 anx

n ∀x ∈ (−R,R). Usually
find it using ratio test

x−R R0

conv

div div

9. Basic Properties of Power Series
Let f(x) =

∑∞
n=0 anx

n, g(x) =
∑∞

n=0 bnx
n with radii

x ∈ (−R1, R2), x ∈ (−R2, R2) where R1, R2 > 0 and
R = min(R1, R2). Then:
Equality rule:
• If f(x) = g(x) ∀x ∈ (−R,R) then an = bn∀n
Sum rule:
• f(x) + g(x) =

∑∞
n=0(an + bn)x

n

Multiple rule:
• λf(x) =

∑∞
n=0 λanx

n ∀λ ∈ R
Product rule:
•f(x)g(x) =

∑∞
n=0(a0bn + a1bn−1 + ...+ anb0)x

n

10.General Binomial Theorem

∀q ∈ R : (1 + x)q =
∞∑
n=0

(
q
n

)
xn, x ∈ (−1, 1)

where

(
q
n

)
= q(q−1)...(q−(n−1))

n!

11.Partial Fractions (deg of numerator > denominator)
cx+d

(x−a)(x−b) =
A

x−a +
B

x−b ⇒ cx+d = A(x− b)+B(x−a)

Hence, A = cx+d
x−b

∣∣∣
x=a

, B = cx+d
x−a

∣∣∣
x=b

(cover up rule)

for any number of factors in denominator with no re-
peated factor. UNDERSTAND THIS! note 17

Decimal Representation of R
1. General form of terminating decimal: .a1a2 · · · an

2. General form of repeating decimal: .a1a2 · · · amḃ1ḃ2 · · · ḃn,
where b is a repeating sequence of characters. To ex-
press it as a rational number:
0.591̇02̇ = 59

100+
102
105

+ 102
108

+... = 59
100+

102
105

(1+ 1
103

+ 1
106

+

...) = 59
100+

102
105

(
1

1−1/103

)
By formula of

∑
n≥0 r

n = 1
1−r .

Giving: 59
100 + 102

100
1

999 = 59043/99900

3. ∀x ∈ R : a0 +
a1
10 + a2

102
... < x < a0 +

a1
10 + a2+1

102
..., both

converging to x, hence approximating any real number.

4. Second Order ODE particular solutions for f(x)
f(x) = eαx, then form for a particular solution y:
1. y = Aeαx if α is not a root of the auxiliary equation
2. y = Axeαx if α is a non-repeated root
3. y = Ax2eαx if α is a repeated root

f(x) is polynomial of degree n
1. pol of deg n if 0 is not a root of the Aux. equation
2. pol of deg n+ 1 if 0 is a non-repeated root
3. pol of deg n+ 2 if 0 is a repeated root

f(x) = A cosαx+B sinαx
2. y = C cosαx+D sinαx if iα is not root of Aux. eq.
3. y = x(C cosαx+D sinαx) otherwise
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Part 4

Limits and Continuity

1. lim
x→a

f(x) = l means: for every sequence (xn) in some

open interval I of R, a ∈ I with xn → a, xn ̸= a, for
all n, the sequence (f(xn)) converges to l. Note that
lim

x→a±
f(x) = l denotes a limit from left/right.

2. Floor function ⌊3.7⌋ = 3, Ceiling function: ⌈3.7⌉ = 4

lim
x→k−

⌊x⌋ = k − 1, lim
x→k+

⌊x⌋ = k,

lim
x→k−

⌈x⌉ = k, lim
x→k+

⌈x⌉ = k + 1.

3. Combination rules for limits
If limx→a f(x) = l and limx→a g(x) = m then
sum rule limx→a(f(x) + g(x)) = l +m
multiple rule limx→a λf(x) = λl (λ ∈ R)
product rule limx→a f(x)g(x) = lm

quotient rule limx→a
f(x)
g(x) = l

m provided m ̸= 0.

Squeeze rule for limits
If f(x) ≤ g(x) ≤ h(x) for x ̸= a, limx→a f(x) =
l and limx→a h(x) = l, then limx→a g(x) = l.

4. Continuity: Let f : D ⊆ R → R. f is continu-
ous at a point a ∈ D if limx→af(x) exists and equals
f(a). And f : D → R. Includes: polynomials, rational
functions, modulus, nth root with n ≥ 1 ∈ Z, trigono-
metrics, exponents, functions def. by power series

5. If f, g continuous at a then so are:
1)f + g; 2)λf(λ ∈ R); 3)fg; 4)fg ; 5)If f cont. at
a and g cont. at f(a) then g ◦ f is cont. at a

6. Value of lim
x→a

f(x) doesn’t depend of f(a), so can exist

when f(a) doesn’t.

7. Intermediate Value Theorem: If f : [a, b] → R
cont. and f(a), f(b) have opposite signs, then ∃c ∈
(a, b)|f(c) = 0. (The function will have to cross x-axis)

8. Extreme Value Theorem: If f : [a, b] → R cont.
then ∃m,M ∈ [a, b].∀x ∈ [a, b]|f(m) ≤ f(x) ≤ f(M).
(Continous function defined on a closed bounded in-
terval has a minimum and a maximum points). Min-
imum point would be: ∀x ∈ [a, b]|f(x) ≥ f(m), and
maximum: f(x) ≤ f(m).

Integration

1. Integration is defined as the area of the region
bounded by mr = glb, Mr = lub of {f(x)|xr−1 ≤
x ≤ xr}, so mr ≤ f(x) ≤ Mr∀xr−1 ≤ x ≤ xr, so the
area between xr−1, xr is between (xr − xr−1)mr and
(xr − xr−1)Mr. To find area between a, b: sum contri-
butions from all such sub-intervals.

2. For each patition P = {x0, ..., xn}of [a, b] def. lower
sum L(f, P ) =

∑n
r=1(xr − xr−1)mr and uppoer sum

U(f, P ): same but Mr. If there is a unique number
L(f, P ) ≤ A ≤ U(f, P ) then f is integrable over [a, b]
and A is the definite integral (area under the graph),
denoted by A =

∫ a
b f(x)dx.

3. Properties of definite integrals:
Sum rule:

∫ b
a ((f(x)+g(x))dx =

∫ b
a f(x)dx+

∫ b
a g(x)dx

Multiple rule:
∫ b
a λf(x)dx = λ

∫ b
a f(x)dx

Transitivity?:
∫ c
a f(x)dx =

∫ b
a f(x)dx+

∫ c
b f(x)dx

Get ratioed: f(x) ≤ g(x) →
∫ b
a f(x)dx ≤

∫ b
a g(x)dx

4. First Fundamental Theorem of Calculus
f : [a, b] → R integrable, F : [a, b] → R such that:
F (x) =

∫ x
a f(t)dt. If f continuous at c ∈ (a, b) then F

differentiable at c and F ′(c) = f(c)

5. Second Fundamental Theorem of Calculus
f : [a, b] → R continuous, F differentiable with F ′ = f ,

then
∫ b
a f(x)dx = F (x)|ba = F (b)− F (a).

Alternatively:
∫
f(x)dx = F (x) + c for constant c.

6. DON’T FORGET THE CONSTANT c

Second Order ODEs

1. Second order ODE: ay′′ + by′ + cy = f(x) where
a, b, c are constants. When f(x) = 0, then the equa-
tion is Homogeneous: y = P (x) is a particular so-
lution, y = H(x) is general solution at f(x) = 0, then
y = H(x) +P(x) is general sol. of ay′′+by′+cy = f(x)

2. Auxiliary equation has form aλ2 + bλ+ c = 0
1. λ1 ̸= λ2 ∈ R, then y = Aeλ1x +Beλ2x

2. λ1 = λ2 ∈ R, then y = (A+Bx)eλx

3. λ1, λ2 ∈ C, then y = eαx(A cosβx+B sinβx), where
λ1, λ2 = α± iβ so y1 = eαx cosβx, y2 = eαx sinβx
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Differentiation

1. Real function f : A → B is differentiable at a ∈ A
if ∃ lim

x→a

f(x)−f(a)
x−a ≡ lim

h→0

f(a+h)−f(a)
h and differentiable if

true for all a ∈ A. Also denoted as: f ′(x) = d
dxf(x) in

Leibniz notation

2. Theorem: If f is differentiable at a then f is contin-
uous at a.

3. Combination Rules for Derivatives
Sum rule: (f + g)′ = f ′ + g′

Multiple rule: (λf)′ = λf ′

Product rule: (fg)′ = fg′ + f ′g

Quotient rule: (fg )
′ = f ′g−fg′

g2

Chain rule (g ◦f)′(x) = g′(f(x))f ′(x) ≡ dy
dx = dy

dz ×
dz
dx

They are all differentiable if f, g are. Also, trig rules:
(sinx)′ = cosx (cosx)′ = − sinx (tanx)′ = 1

cos2 x

4. If
∑

(anx
n) is a power series with radius of conv. R,

then function f(x) =
∞∑
n=0

anx
n (−R < x < R), then

f ′(x) =
∞∑
n=1

nanx
n−1.

5. Exponential function can be defined as the sum of a

power series: ex =
∞∑
n=0

xn

n! ∀x ∈ R. Hence, d
dxe

x = ex

6. Partial Derivative of a function f(x, y) of indepen-
dent variables x, y comes from differentiating f(x, y)
with respect to one of the variables, while holding
the other constant. So, if f(x, y) = x2 + 8y then
∂f(x,y)

∂x = 2x, and ∂f(x,y)
∂y = 8. Often write ∂f

∂x ≡ fx

7. Turning Points: If ∀x : f(x) ≤ f(a) then f has a lo-
cal maximum at a, and if ∀x : f(x) ≥ f(a) - a local
minimum at a. Both are called turning points of f .

8. Turning Point Theorem: If a differentiable function
f has a turning point at a then f ′(a) = 0.

9. Point a where f ′(a) = 0 is a stationary point of f ,
and it need not be a turning point. If it’s not, then it’s
a point of inflection. To locate maxima, minima:
consider only stationary points and the end points.

10.Rolle’s Theorem: If f : [a, b] → R is continu-
ous, differentiable on (a, b) and f(a) = f(b), then
∃c ∈ (a, b)|f ′(c) = 0. (There has to be a turning point
between them if the function returns to the same value)

11.Mean Value Theorem: If f cont. on [a, b] and dif-

ferentiable on (a, b), then ∃c ∈ (a, b)|f ′(c) = f(b)−f(a)
b−a .

(its gradient is parallel to the line joining a, b)

12. If f cont. on [a, b], diff. on (a, b), then:
1. f ′(x) = 0 ∀x ∈ (a, b) → f constant on [a, b], or
f ′(x) > 0 → increasing, f ′(x) < 0 → decreasing.
2. Second Derivative Test: Suppose f ′(c) = 0,
then if f ′′(c) > 0 then f has a local minimum at c, if
f ′′(c) < 0, then a local maximum.

13. Function F is an indefinite integral of f if F ′ = f .
Any two indefinite integrals of f can differ only by a
constant c = G(x)− F (x)

14.L’Hôpital’s Rule: Suppose f(x) = g(x) = 0, then

if lim
x→a

f(x)
g(x) exists then so does lim

x→a

f ′(x)
g′(x) = lim

x→a

f(x)
g(x) ,

NOT (f(x)g(x) )
′. If L’Hôpital’s doesn’t work on the first

try, do it again with f ′′(x), g′′(x)

15. Implicit functions of x are defined by an equa-
tion relating x and some other variable. Differenti-
ate as normal, when deriving the other variable, use
chain rule (insert dy

dx). E.g. x2 + y2 = 5, find f ′
x, so

2x+ 2y dy
dx = 0 ⇒ dy

dx = −x
y

16. Function f : A → B is
Surjective: ∀y ∈ B.∃x ∈ A|f(x) = y,
Injective: ∀x, y ∈ A.f(x) = f(y) → x = y and
Bijective: ∀y ∈ B.∃!x ∈ A|f(x) = y, or iff it has in-
verse function f−1 : B → A s.t. f−1(y) = x ≡ f(x) = y

17. Can make f bijective by considering subsets of do-
main/subdomain, hence if f : A → B is inj. and has
range C then f : A → C bij. hence there is inverse
f−1 : C → A. Continuity of inverse functions: If
f : [a, b] → R is continuous injective function, then
inverse f−1 : C → [a, b] is also cont.

18.Differentiation of inverse functions: Let f :
[a, b] → R a continuous function, if f differentiable on
(a, b) and is strictly increasing/decreasing then f has
an inverse f−1 which is differentiable. If y = f(x) then
(f−1)′ = 1

f ′(x) ≡
dy
dx = 1

dy/dx

19.Derivatives of inverses of trigonometric f :
arcsin’ = 1√

1−x2
arccos’ = −1√

1−x2
arctan’ = 1

1+x2

write f(x) = y, find derivative dx
dy , then find dy

dx
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Logarithms and Exponents

1. Logarithm: log x =
∫ x
1

1
t dt, which exists since inte-

grand (1t ) continuous on interval between (1, x) ∀x > 0

2. Properties of logarithm:
1. log(1) = 0
2. Log is strictly increasing: x < y → log x < log y
3. Log is differentiable d

dx log x = 1
x ∀x > 0

4. log(xy) = log(x) + log(y) ∀x, y > 0
5. log(x/y) = log x− log y
6. Function log : (0,∞) → R is bijective.

3. Exponential: Since log : (0,∞) → R bijective, it has
inverse function exp : R → (0,∞). So y = exp(x) ≡
x = log y (x ∈ R, y > 0)

4. Properties of exponents:
1. exp(x+ y) = exp(x) exp(y)
2. exp is differentiable d

dx exp(x) = exp(x), exp(0) = 1
3. exp(x) = limn→∞

(
1 + x

n

)n
4. exp(x) =

∑∞
n=0

xn

n!

5. ∀x ∈ R define ex = exp(x), then ex+y = exey ∀x, y ∈ R

6. For a > 0, x ∈ R, ax def
= ex log a, then ∀a, b > 0, x, y ∈ R:

1.(ab)x = axbx 2.axay = ax+y 3.(ax)y = axy = (ay)x

7. Change of base: logb x = log x
log b (b ̸= 1), hence:

y = logb x ≡ log x = y log b ≡ x = by

Taylor’s theorem

1. Let f be an (n+ 1)-times differentiable function on an
open interval containing points a and x. Then:

f(x) = f(a)+f ′(a)(x−a)+...+
f (n)(a)

n!
(x−a)n+Rn(x)

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

for c between a, x.

2. Tn(x) = a0+ ...+an(x−a)n where ai =
f (i)(a)

i! is called
the Taylor polynomial of degree n of f at a. It’s
a polynomial which approximates function f in some
interval containing a, and the error in approx. is given
by remainder term Rn(x).

3. Since limn→∞Rn(x) = 0, better approximation, called
Taylor series for f :

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

4. When n = 0, Taylor’s theorem reduces to Mean Value
Theorem, which is a consequence of Rolle’s theorem.

5. When first n− 1 derivatives vanish at a, then by Tay-

lor’s theorem: f(x)−f(a) = Rn−1(x) =
f (n)(c)

n! (x−a)n,
which helps prove the following statement (6).

6. nth derivative test for nature of station. points
Suppose f has stationary point at a, and f ′(a) = · · · =
f (n−1)(a) = 0, but f (n) ̸= 0, so if f (n) continuous, then
1. n even, f (n)(a) > 0: f has local minimum at a.
2. n even, f (n)(a) < 0: f has local maximum at a.
3. n odd: f has point of inflection at a.

7. Maclaurin Series: Take a = 0 in Taylor’s theorem
results in:

f(x) =
∞∑
n=0

f (n)(0)

n!
xn, Rn(x) =

f (n+1)(c)

(n+ 1)!
xn+1

with f (0)(0) = f(0), so to find those series, just replace

f with your function: ex = 1
0!+

x
1!+

x2

2! + · · · =
∑∞

n=0
xn

n!

First Order ODEs

1. Ordinary differential equation (ODE) is an equa-
tion containing derivatives of a a function of a single
variable: y′ = 4x y′′ + 4y = x etc. Order of diff. eq.
is that of the highest derivative it contains, so above
equations have order of 1 (y′) and 2 (y′′).

2. General solution contains n arbitrary constants,
particular solution doesn’t contain any. y′ = 4x ⇒∫
y′dy =

∫
4xdx ⇒ y = 2x2 + c (general sol.), y =

2x2 + 2 (particular sol.) if y = 4 when x = 1

3. Separable Equations is ODE of form: dy
dx =

f(x)g(y) ⇒ 1
g(y)

dy
dx = f(x) ⇒

∫
1

g(y)dy =
∫
f(x)dx,

solving which will give a solution. Remember the
constant c, can separate dy

dx e.g. dy
dx = 1 ⇒ dy = dx

4. Homogeneous Equations is ODE of form dy
dx =

f(y/x). Let v = y/x ⇒ y = xv, then d
dx(xv) = f(v) ⇒

x dv
dx + v = f(v) ⇒ dv

dx = f(v)−v
x , which is separable.

Remember d
dx(xv) = (xv)′ = v + xdv

dx (chain rule).

5. Linear Equations is ODE of form dy
dx+P (x)y = Q(x)

Take Q(x) = 0, which gives y = e−
∫
P (x)dx, let

Integrating factor I(x) = e
∫
P (x)dx s.t. yI(x) = 1.

Differential d
dxI(x) = I(x)P (x). Multiply both sides of

original equation by I(x) to get: yI(x) =
∫
Q(x)I(x)

(general solution), or substitute known values to get
particular solution (get rid of c).
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