Part 1

General

- 1. Two's complement: $x \mod 2^N$
- 2. Decimal to Binary: keep halving the number, noting remainders. Take digits from end to start.
- 3. Division algorithm: $a, b \in \mathbb{Z}, b \neq 0 \rightarrow \exists \text{ unique } q, r \in \mathbb{Z}$ (quotient, remainder) s.t. $a = qb + r, 0 \leq r < |b|$
- 4. $b \in \mathbb{Z}$ divides $a \in \mathbb{Z}$ if a = qb for some $q \in \mathbb{Z}$.
- 5. $gcd(0, n) = n \forall n > 0$
- 6. Congruence $a \equiv b \pmod{n}$ if $a = b + kn, k \in \mathbb{Z}$
- 7. Every rational number has a **co-prime** number with $gcd(m, n) = 1, n \ge 1$ and inverse $(q \cdot q^{-1} = 1)$
- 8. Algebraic number $n \in \mathbb{R}$ if solution of a polynomial equation with rational coefficients. Otherwise called **Transcendental**
- 9. $U \in \mathbb{R}$ is the least upper bound (**supremum**) of S if U is an upper bound of S and $U \leq u$ for every upper bound u of S.
- 10. $L \in \mathbb{R}$ is the greatest lower bound (**infimum**) of S if L is a lower bound of S and $L \geq l$ for every lower bound l of S
- 11. Complex numbers $\mathbb C$ in form of $a+ib, a, b \in \mathbb R, i^2=-1$ It holds: $a+ib=c+id \Leftrightarrow a=c, b=d$, separating into real (a,c) and imaginary (b,d) parts. i isn't in the imaginary part! Complex **conjugate**: $\overline{a+ib}=a-ib$ The real part of $z \in \mathbb C$ is $\frac{(z+\overline{z})}{2}$, imaginary part is $\frac{(z-\overline{z})}{2i}$
- 12. **Polar** Coordinates: $x + iy = r(\cos \theta + i \sin \theta)$, where $r = \sqrt{x^2 + y^2}$ is the **modulus** of x + iy, denoted as |x + iy|, representing distance between coordinate and origin, and $\tan \theta = \frac{y}{x}$, called the **argument**, with principal argument satisfying $-\pi < \theta \le \pi$

Theorems and Important

13 Axioms of \mathbb{R}

- 1. Commutativity x + y = y + x
- 2. Associativity x + (y + z) = (x + y) + z
- 3. Distributivity x.(y+z) = x.y + x.z
- 4. Additive ident. $\exists 0 | x + 0 = x$
- 5. Multiplicative id. $\exists 1 | x.1 = x$
- 6. id's 4,5 are unique $1 \neq 0$
- 7. Every $n \neq 0 \in \mathbb{Z}$ has additive inverse: x + (-x) = 0
- 8. Every $n \neq 0 \in \mathbb{Z}$ has multipl. inverse: $x.x^{-1} = 1$
- 9. Transitivity: $x, y \land y < z \rightarrow x < z$
- 10. Trichotomy law: x < y or y < x or x = y
- 11. Preserv. ordering under add. $x < y \rightarrow x + a < y + a$
- 12. Pres. ordering under mult. $a > 0 \land x < y \rightarrow x.a < y.a$
- 13. Completeness: Every non-empty subset that bounded above has a least upper bound

Properties of the modulus. For any $z, w \in \mathbb{C}$:

- 1. $|z| = |\bar{z}|$,
- $2. |z| = \sqrt{z\bar{z}},$
- 3. $z\bar{z} = |z|^2$,
- 4. |zw| = |z||w|,
- 5. $|z+w| \le |z| + |w|$ (the triangle inequality),
- 6. $||z| |w|| \le |z w|$.

Theorem $\nexists x \in \mathbb{Q}$ s.t. $x^2 = 2$.

Assume opposite, show that $x = \frac{a}{b}$ with gcd(a, b) = 1, then show that a, b even hence contradicting gcd = 1

De Moivre's Theorem For any integer n, $(r(\cos \theta + i \sin \theta))^n = r^n(\cos n\theta + i \sin n\theta)$

The Archimedean Property of the Reals

Given any $\epsilon \in \mathbb{R}^+$ there exists $n \in \mathbb{N}$ such that $n\epsilon > 1$

Fundamental Theorem of Algebra Every polynomial equation of degree n with complex coefficient has exactly n solutions in \mathbb{C}

Euclidean Algorithm: gcd(m, n): For i = 1, 2, 3. if $r_i = 0$: output r_{i-1} ; if $r_i \neq 0$, divide r_{i-1} by r_i and let r_{i+1} be the remainder.

Vectors

- 1. $\mathbb{R}^2 = \{(x,y)|x,y \in \mathbb{R}\}\ (\text{Just points in a plane})$
- 2. $\underline{a} + \underline{b} = (a_1 + b_1, a_2 + b_2)$ and $\lambda \underline{a} = (\lambda a_1, \lambda a_2)$
- 3. $\overrightarrow{OP} \equiv \underline{p} = (p_1, p_2) \in \mathbb{R}^2$ where *O*-origin, P- (p_1, p_2) . Vector \underline{p} is called **position vector** of point P. Two vectors are equivalent if they have same length and direction. Given A, B have position vectors $\underline{a}, \underline{b}$, then $\overrightarrow{AB} = b a$.
- 4. Length $|\underline{a}| = \sqrt{a_1^2 + a_2^2}$. Unit vector length is 1. Distance between \underline{a} and $\underline{b} = |\underline{b} \underline{a}|$. To find unit vector \underline{u} , parallel to \underline{v} , use $\underline{u} = \frac{\underline{v}}{|v|}$
- 5. Scalar(dot) Product: $\underline{a}.\underline{b} = a_1b_1 + a_2b_2 = |\underline{a}||\underline{b}|\cos\theta$. Vectors are orthogonal(perpendicular) if their scalar product is 0 and parallel if 1.

Linear Combinations

- 1. If $\underline{u}, \underline{v} \in \mathbb{R}^2$, $\alpha, \beta \in \mathbb{R}$, then vector of form $\alpha \underline{u} + \beta \underline{v}$ is a **linear combination** of $\underline{u}, \underline{v}$. $(6,6) = 1 \cdot (0,3) + 3 \cdot (2,1)$. If $\underline{u}, \underline{v}$ non-parallel, then linear combination represents a **diagonal** of a parallelogram. Linear combination with itself is called **scaling**: $2 \cdot \underline{v}$.
- 2. **Span** of $U = \{\alpha_1 \underline{u}_1 + ... + \alpha_m \underline{u}_m | \alpha_1, ... \alpha_m \in \mathbb{R}\}$ (set of all linear combinations of its elements). Span of $\{(1,0),(0,1)\} = \mathbb{R}^2$. If one of the components is 0 in both $\underline{u},\underline{v}$, then any vector with same component being 0 is a linear combination of $\underline{u},\underline{v}$: (1,0,4),(8,0,5).
- 3. **Subspace** of \mathbb{R}^n is non-empty $S \subseteq \mathbb{R}^n$ with $1)\underline{u},\underline{v} \in S \to \underline{u} + \underline{v} \in S$, $2)\underline{u} \in S, \alpha \in \mathbb{R} \to \alpha\underline{u} \in S$. Closure under addition and scalar multiplication. Every subspace of \mathbb{R}^n contains a zero vector. If Nonempty finite $U \subseteq \mathbb{R}^n$, then span of U is subspace of \mathbb{R}^n , called subspace spanned (generated) by U.

Linear Independence

- 1. Set $\{\underline{u_1},...\underline{u_m}\}\subseteq\mathbb{R}^n$ is **linearly dependent** if $\exists \alpha_1,...\alpha_m\in\mathbb{R}$ not all zero s.t. $\alpha_1\underline{u}_1+...+\alpha_m\underline{u}_m=\underline{0}$, linearly independent otherwise. Any set containing $\underline{0}$ is linearly dependent. Set S is linearly dependent if one of the vectors is a linear combination of other vectors in $S.\downarrow$
- 2. **Predecessor Theorem**: set $\underline{u}_1, ... \underline{u}_m$ of nonzero vectors is linearly dependent iff some \underline{u}_r is a linear combination of its predecessors $\underline{u}_1, ... \underline{u}_{r-1}$. **UNDERSTAND THE PROOF**

Basis and Dimension

- 1. Let S be subspace of \mathbb{R}^n , then a set of vectors is called a **basis** if it's linearly independent and spans S: $\{(0,1),(1,0)\}$ is basis for \mathbb{R}^2 , moreover, if it's 1, with everything else 0 like above, it's a **standard basis**.
- 2. **Theorem**: Let S be subspace of \mathbb{R}^n , if set $\{\underline{u}_1, ..., \underline{u}_m\}$ spans S then any linearly independent subset of S contains at most m vectors. **UNDERSTAND THE PROOF**
- 3. **Dimension** of subspace of \mathbb{R}^n is the number of vectors in a basis for the subspace. Any two bases for a subspace S have the same number of elements.
- 4. Let $\{\underline{v}_1, ... \underline{v}_m\}$ be set of nonzero vectors that spans m-dimentional subspace S of \mathbb{R}^n . Then removing each linear combination of its predecessors \underline{v}_i will leave a basis for S. The basis will have **exactly** m vectors, any subset of S with > m vectors is linearly dependent.

Matrix Algebra

1. A matrix A of order $m \times n$ is an array of numbers arranged in m rows and n columns and usually written

$$\underline{\underline{A}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & \cdots & a_{mn} \end{bmatrix} \quad \text{or} \quad A = [a_{ij}]_{m \times n}.$$

- 2. Column matrix: $m \times 1$, row matrix or row vector: $1 \times n$. Zero matrix $O_{m \times n}$ all elements are 0. Negative of A is matrix $-A = [-aij]_{m \times n}$. Square matrix: m = n. Diagonal matrix diag $[a_{11}, ..., a_{nn}]$: only elements $a_{11}, ... a_{nn}$ are non-zero. Identity matrix is square diagonal matrix with 1's as entries.
- 3. $A + B = [a_{ij} + b_{ij}]_{m \times n}$, only defined for same order matrices. Scalar multiplication $\lambda A = [\lambda a_{ij}]_{m \times n}$. Nothing special in properties of these operations.
- 4. Multiplication $A = [a_{ij}]_{x \times y}, B = [b_{ij}]_{y \times z}.AB = [c_{ij}]_{x \times b}$ Multiply **rows** of left matrix **by columns** of the right one. Matrix multiplication **isn't commutative**: $AB \neq BA$
- 5. Properties of matrix multiplication/addition:
 - 1. IA = A = AI 2. OA = O = AO
 - 3. $A^x A^y = A^y A^x$ 4. A + (-A) = O

Matrix Determinants and Inverse

- 1. Transpose A^T is matrix A with swapped rows and columns, so $([a_{ij}]_{m \times n})^T = [a_{ji}]_{n \times m}$. Properties: 1. $(A^T)^T = A$ 2. $(A + B)^T = A^T + B^T$ 3. $(\lambda A)^T = \lambda A^T$ 4. $(AB)^T = B^T A^T$
- 2. **Inverse**: If A, B are square, have same order, then an inverse of A, denoted A^{-1} is B if AB = I = BA. An inverse is unique. $A^{-1} = B \rightarrow B^{-1} = A$.
- 3. The **Determinant** of 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is defined to be (ad-bc) and is denoted by $\det(A)$ or |A|. A 2×2 matrix A is invertible iff its determinant is nonzero. $|A| = |A^T|, |AB| = |A||B|.$
- 4. System of linear equations can be written as $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \equiv \begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$ Can (1) interchange two rows; (2) multiply a row by a nonzero number; (3) add a multiple of one row_to another in the **augmented** matrix
- 5. Matrices $A \sim B$ are row equivalent if A can be transformed into B using finite number of elementary row $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$ operations. Row echelon form: x_4 x_5 . **Elementary** matrix E is obtained $\downarrow 0$ from I by applying basic row operations, and is used for matrix transformations. (1) $E_{ij}(-\mu)E_{ij}(\mu) = I$, $(2)E_{ij}E_{ji}=I$; and $(3)E_i(\frac{1}{\lambda})E_i(\lambda)=I$, all of which are commutative.
- 6. 3×3 determinant $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$: choose a row, mutliply Remember about alternating checkerboard signs!
- 7. If $A = [a_{ij}]$ is $n \times n$ matrix then ij^{th} minor M_{ij} of A is determinant of $(n-1) \times (n-1)$ matrix obtained by deleting i^{th} row and j^{th} column from A. The ij^{th} **cofactor** $A_{ij} = (-1)^{i+j} M_{ij}$ (minor with alternating signs). Determinants are recursive with base case 1×1 .
- 8. If matrix B obtained from A: (1) multiply a row of A by number $\lambda \to |B| = \lambda |A|$, (2) Interchange two rows of $A \to |B| = -|A|$, (3) Add a multiple of one row of A to another $\rightarrow |B| = |A|$.
- 9. Adjoint matrix is the transpose of a matrix of cofactors of A. If $|A| \neq 0$ then it's invertible, and the matrix inverse $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)$
- 10. Set of n vectors in \mathbb{R}^n is linearly independent (therefore a basis) iff it is the set of column vectors of a matrix with nonzero determinant.

Linear Transformations

- 1. Function $T: \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation if $\forall \underline{u}, \underline{v} \in \mathbb{R}^m, \lambda \in \mathbb{R} : T(\underline{u} + \underline{v}) = T(\underline{u}) + T(\underline{v})$ and $T(\lambda u) = \lambda T(u)$ (preservation under addition and scalar mutliplication)
- 2. If $T: \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation, then T(0) = 0. In the exam, try to substitute 0, and check whether the output is also 0 when determining whether it's a linear transformation.
- 3. Let $u \in \mathbb{R}^2$ be nonzero vector, if $x \in \mathbb{R}^2$, **projection** of \underline{x} onto \underline{u} is vector $P_u(\underline{x})$ with: (1) $P_u(\underline{x})$ is a multiple of \underline{u} and (2) $\underline{x} - P_u(\underline{x})$ is perpendicular to \underline{u} . Projection is a linear transformation, and so is rotation of a point an angle about the origin.
- 4. Let M be $n \times m$ matrix, then function $T: \mathbb{R}^m \to \mathbb{R}^n$ defined by $T(\underline{x}) = M\underline{x}$ for every $\underline{x} \in \mathbb{R}^m$ is a linear transformation. (Every Matrix Defines a Linear Transformation)
- 5. Let $V = \{\underline{v}_1, ..., \underline{v}_n\}$ be basis for \mathbb{R}^n . If $\underline{x} \in \mathbb{R}^n$ then $\underline{x} = \alpha_1 \underline{v}_1 + ... + \alpha_n \underline{v}_n$, which is a unique expansion, denoting **coordinates** of \underline{x} with respect to basis V. **Identity** transformation $I(\underline{x}) = \underline{x}$ for all $\underline{x} \in \mathbb{R}^n$
- 6. Matrix of linear transformation: for basis V, W, find the image of $T:V\to W$, as a linear combination of vectors in W, and put the coefficients as columns in the resulting in a transition matrix A. When changing the basis, of u from V to W, multiply matrix A by coordinates of u with respect to V, and the result will be the coordinates of u with respect to W.
- 7. Let square matrix $A_{n\times n}$ and \underline{r} a non-zero column vector. $Ar = \lambda r$, where $\lambda \in \mathbb{R}$ is called **Eigenvalue** and ris an **Eigenvector**. (When pre-multiplied by A, vector <u>r</u> doesn't change direction). A number λ is an eigenvalue of the matrix A iff $|A - \lambda I| = 0$ (characteristic equation) of A, and is a polynomial of degree n. Eigenvalues may be complex.
- 8. For $A_{n\times n}$, if $V^{-1}AV = D = \operatorname{diag}(\lambda_1,...\lambda_n)$, for $V_{n\times n}$ with columns $[\underline{v}_1, ..., \underline{v}_n]$, then those \underline{v}_i are eigenvectors of A and λ_i are corresponding eigenvalues. To find P,D: solve characteristic equation, find eigenvalues, express vectors as variable times a vector of coefficients, those coefficients will become columns in P, and D is a diagonal matrix of those eigenvalues.

Sequences

- 1. Sequences are infinite lists of numbers defined by a formula of the n^{th} term, like $(2^n) = (1, 2, 4, 8...)$ or recursively: $F_0 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n$ (Fibonacci)
- 2. Sequence (a_n) of real numbers **converges** to a **limit** $l \in \mathbb{R}$ if $\forall \epsilon > 0.\exists N : |a_n l| < \epsilon$ for all n > N. If it converges, then $\lim_{n \to \infty} a_n = l$ or $a_n \to l$. All constant sequences converge.
- 3. Combination Rules for Convergent Sequences

Convergent sequences $a_n \to \alpha$, $b_n \to \beta$, $c_n \to \gamma$, then:

Sum rule $a_n + b_n \to \alpha + \beta$

Scalar multiple rule $\lambda a_n \to \lambda \alpha$ (for $\lambda \in \mathbb{R}$)

Product rule $a_n b_n \to \alpha \beta$

Reciprocal rule $1/a_n \to 1/\alpha \quad (\alpha \neq 0)$

Quotient rule $b_n/a_n \to \beta/\alpha \quad (\alpha \neq 0)$

Hybrid rule $b_n c_n/a_n \to \beta \gamma/\alpha \quad (\alpha \neq 0)$

- 4. Sequence a_n is bounded **above** if $\exists U. \forall n : a_n \leq U$, bounded **below** $\exists L. \forall n : a_n \geq L$, and is **bounded** if such U, L exist. A sequence a_n is **increasing** if $\forall n : a_{n+1} \geq a_n$, and **decreasing** if $\forall n : a_{n+1} \leq a_n$. **Subsequence** of a sequence is obtained by deleting some terms.
- 5. Basic properties of convergent sequences
 - 1) A convergent sequence has a **unique limit**
 - 2) $a_n \to l$, then every subseq. of (a_n) also conv. to l
 - 3) If $a_n \to l$ then $|a_n| \to l$. \downarrow Squeeze rule \downarrow
 - 4) $a_n \to l \land b_n \to l$ and $\forall n : a_n \le c_n \le b_n$, then $c_n \to l$
 - 5) Conv. seq. is bounded: $\exists B > 0. \forall n : -B \leq a_n \leq B$
 - 6) Any increasing sequence, bounded above and decreasing seq. bounded below, converges.
- 6. Sequence (a_n) diverges to infinity if $\forall K \in \mathbb{R}. \exists N | n > N \Rightarrow a_n > K$. If it does diverge, we write $a_n \to \infty$. A non-convergent, non-divergent sequence oscillates.
- 7. Basic Convergent Sequences
 - $(1)\lim_{n\to\infty}\frac{1}{n^p}=0\qquad \qquad \text{for any } p>0$
 - (2) $\lim_{n \to \infty} c^n = 0$ for any c with |c| < 1
 - (3) $\lim_{n \to \infty} c^{1/n} = 1$ for any c > 0
 - $(4) \lim_{n \to \infty} n^p c^n = 0 \qquad \text{for } p > 0 \text{ and } |c| < 1$
 - $(5) \lim_{n \to \infty} \frac{c^n}{n!} = 0 \qquad \text{for any } c \in \mathbb{R}$
 - (6) $\lim_{n \to \infty} \left(1 + \frac{c}{n} \right)^n = e^c$ for any $c \in \mathbb{R}$

Recurrences

- 1. Recurrence is a rule which defines each term of a sequence using the preceding terms.
- 2. **Linear recurrences** with constant coefficients of the form: $x_n + a_1x_{n-1} + \ldots + a_kx_{n-k} = f(n)$, (a: constant, f: function). If values of first k terms are given, then it's a unique sequence (x_n) . **Homogeneous** recurrence: $\forall n : f(n) = 0$.
- 3. General solution of recurrence $x_n + ax_{n-1} + bx_{n-2} = 0$ when b = 0 is: $\underline{x_n = \lambda^n A}$. And its **Auxiliary** equation is: $\underline{\lambda^2 + a\lambda + b} = 0$. Let λ_1, λ_2 be its roots. If $\lambda_1 \neq \lambda_2$ then $x_n = A\lambda_1^n + B\lambda_2^n$ If $\lambda_1 = \lambda_2$ then $x_n = A\lambda_1^n + Bn\lambda_2^n$ Use first 2 terms to find A, B by substitution.
- 4. Non-homogeneous recurrence:
 - (1) Find general solution $x_n = h_n$ of homogeneous recurrence (=0),
 - (2) Find any particular solution $x_n = p_n$ of the original recurrence (= f(n) (replace x_n with a polynomial of degree of f(n), like $x_n = Cn + D$)
 - (3) General solution will be $x_n = h_n + p_n$.

Series

- 1. Series $\sum a_n$ is a pair of sequences consisting of $(a_n) \to$ sequence of terms, and $(s_n) = a_0 + \ldots + a_n \rightarrow$ sequence of partial sums.
- 2. If (s_n) of partial sums converges to s, then series $\sum a_n$ converges to the sum s: $\sum_{n=0}^{\infty} a_n = s$, diverges otherwise. Try to simplify the expression for a_n , then find s_n , and usually subtract one from another to end up with an easy solution, and take a limit of that expression to find the answer.

3. Sum Rule:

 $\sum a_n \to \alpha$ and $\sum b_n \to \beta$ then $\sum (a_n + b_n) \to (\alpha + \beta)$ Multiple Rule:

if $\sum a_n \to \alpha$ and $\lambda \in \mathbb{R}$, then $\sum \lambda a_n \to \lambda \alpha$ Other rules:

If series $\sum a_n$ converges, then sequence $(a_n) \to 0$ If series $\sum |a_n|$ converges, then $\sum a_n$ also converges.

- 4. Comparison Test: Suppose $\forall n: 0 \leq a_n \leq b_n$, then if $\sum b_n$ converges then so does $\sum a_n$ if $\sum a_n$ diverges then so does $\sum b_n$
- 5. Ratio Test: if $\left|\frac{a_{n+1}}{a_n}\right| \to L$ then if $0 \le L < 1$ then $\sum a_n$ converges if L > 1 or $L = \infty$ then series $\sum a_n$ diverges if L=1 then test is inconclusive.

6. Basic Convergent Series

- (1) $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$ for any r with |r| < 1. (2) The series $\sum \frac{1}{n_r^k}$ converges for any k > 1.
- (3) The series $\sum n^k r^n$ converges for k > 0 and |r| < 1.
- (4) $\sum_{n=0}^{\infty} \frac{c^n}{n!} = e^c$ for any $c \in \mathbb{R}$. However, $\sum_{n=0}^{\infty} \frac{1}{n^k}$ diverges $\forall k \leq 1$
- 7. Power Series of form $\sum a_n x^n$ for $n \geq 0$. **Lemma**: If $\sum a_n R^n$ converges for some $R \geq 0$, then $\sum a_n x^n$ converges $\forall |x| < R$
- 8. $R \geq 0$ is radius of convergence of $\sum a_n x^n$ if this power series converges $\forall |x| < R$ and diverges for $\forall |x| > R$. If series converges $\forall x$ then $R = \infty$. Radius of convergence defines function $f:(-R,R)\to\mathbb{R}$ given by $f(x) = \sum_{n=0}^{\infty} a_n x^n \quad \forall x \in (-R, R)$. Usually find it using ratio test

9. Basic Properties of Power Series

Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $g(x) = \sum_{n=0}^{\infty} b_n x^n$ with radii $x \in (-R_1, R_2), x \in (-R_2, R_2)$ where $R_1, R_2 > 0$ and $R = min(R_1, R_2)$. Then:

Equality rule:

- If $f(x) = g(x) \ \forall x \in (-R, R)$ then $a_n = b_n \forall n$ Sum rule:
- $f(x) + g(x) = \sum_{n=0}^{\infty} (a_n + b_n)x^n$

Multiple rule:

• $\lambda f(x) = \sum_{n=0}^{\infty} \lambda a_n x^n \quad \forall \lambda \in \mathbb{R}$

Product rule:

 $f(x)g(x) = \sum_{n=0}^{\infty} (a_0b_n + a_1b_{n-1} + \dots + a_nb_0)x^n$

10. General Binomial Theorem

where
$$q \in \mathbb{R} : (1+x)^q = \sum_{n=0}^{\infty} {q \choose n} x^n, \quad x \in (-1,1)$$

11. Partial Fractions (deg of numerator > denominator) $\frac{cx+d}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b} \Rightarrow cx+d = A(x-b) + B(x-a)$

Hence, $A = \frac{cx+d}{x-b}\Big|_{x=a}$, $B = \frac{cx+d}{x-a}\Big|_{x=b}$ (cover up rule) for any number of factors in denominator with **no re**peated factor. UNDERSTAND THIS! note 17

Decimal Representation of \mathbb{R}

- 1. General form of **terminating decimal**: $a_1a_2\cdots a_n$
- 2. General form of **repeating decimal**: $.a_1a_2 \cdots a_m \dot{b}_1 \dot{b}_2 \cdots \dot{b}_n$, where b is a repeating sequence of characters. To express it as a **rational** number:

$$0.59\dot{1}0\dot{2} = \frac{59}{100} + \frac{102}{10^5} + \frac{102}{10^8} + \dots = \frac{59}{100} + \frac{102}{10^5} (1 + \frac{1}{10^3} + \frac{1}{10^6} + \dots) = \frac{59}{100} + \frac{102}{10^5} \left(\frac{1}{1 - 1/10^3}\right) \text{ By formula of } \sum_{n \ge 0} r^n = \frac{1}{1 - r}.$$
 Giving: $\frac{59}{100} + \frac{102}{100} \frac{1}{999} = \mathbf{59043/99900}$

3. $\forall x \in \mathbb{R} : a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} \dots < x < a_0 + \frac{a_1}{10} + \frac{a_2+1}{10^2} \dots$, both converging to x, hence approximating any real number.

4. Second Order ODE particular solutions for f(x)

 $f(x) = e^{\alpha x}$, then form for a particular solution y:

- 1. $y = Ae^{\alpha x}$ if α is not a root of the auxiliary equation
- **2.** $y = Axe^{\alpha x}$ if α is a non-repeated root
- **3.** $y = Ax^2e^{\alpha x}$ if α is a repeated root

f(x) is polynomial of degree n

- **1.** pol of deg n if 0 is not a root of the Aux. equation
- **2.** pol of deg n+1 if 0 is a non-repeated root
- **3.** pol of deg n+2 if 0 is a repeated root

 $f(x) = A\cos\alpha x + B\sin\alpha x$

- **2.** $y = C \cos \alpha x + D \sin \alpha x$ if $i\alpha$ is not root of Aux. eq.
- **3.** $y = x(C\cos\alpha x + D\sin\alpha x)$ otherwise

Limits and Continuity

- 1. $\lim_{x\to a} f(x) = l$ means: for every sequence (x_n) in some open interval I of \mathbb{R} , $a\in I$ with $x_n\to a, x_n\neq a$, for all n, the sequence $(f(x_n))$ converges to l. Note that $\lim_{x\to a^\pm} f(x) = l$ denotes a **limit** from left/right.
- 2. Floor function |3.7| = 3, Ceiling function: [3.7] = 4

$$\begin{split} &\lim_{x\to k^-} \lfloor x\rfloor = k-1, & \lim_{x\to k^+} \lfloor x\rfloor = k, \\ &\lim_{x\to k^-} \lceil x\rceil = k, & \lim_{x\to k^+} \lceil x\rceil = k+1. \end{split}$$

3. Combination rules for limits

If $\lim_{x\to a} f(x) = l$ and $\lim_{x\to a} g(x) = m$ then sum rule $\lim_{x\to a} (f(x)+g(x)) = l+m$ multiple rule $\lim_{x\to a} \lambda f(x) = \lambda l \quad (\lambda \in \mathbb{R})$ product rule $\lim_{x\to a} f(x)g(x) = lm$ quotient rule $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{l}{m}$ provided $m \neq 0$.

Squeeze rule for limits

If $f(x) \leq g(x) \leq h(x)$ for $x \neq a, \lim_{x \to a} f(x) = l$ and $\lim_{x \to a} h(x) = l$, then $\lim_{x \to a} g(x) = l$.

- 4. Continuity: Let $f: D \subseteq \mathbb{R} \to \mathbb{R}$. f is continuous at a point $a \in D$ if $\lim_{x\to a} f(x)$ exists and equals f(a). And $f: D \to \mathbb{R}$. Includes: polynomials, rational functions, modulus, n^{th} root with $n \geq 1 \in \mathbb{Z}$, trigonometrics, exponents, functions def. by power series
- 5. If f, g continuous at a then so are: 1)f + g; $2)\lambda f(\lambda \in \mathbb{R})$; 3)fg; $4)\frac{f}{g}$; 5)If f cont. at a and g cont. at f(a) then $g \circ f$ is cont. at a
- 6. Value of $\lim_{x\to a} f(x)$ doesn't depend of f(a), so **can exist** when f(a) doesn't.
- 7. Intermediate Value Theorem: If $f:[a,b] \to \mathbb{R}$ cont. and f(a), f(b) have opposite signs, then $\exists c \in (a,b)|f(c) = 0$. (The function will have to cross x-axis)
- 8. Extreme Value Theorem: If $f:[a,b] \to \mathbb{R}$ cont. then $\exists m, M \in [a,b]. \forall x \in [a,b] | f(m) \leq f(x) \leq f(M)$. (Continous function defined on a closed bounded interval has a minimum and a maximum points). Minimum point would be: $\forall x \in [a,b] | f(x) \geq f(m)$, and maximum: $f(x) \leq f(m)$.

Integration

- 1. **Integration** is defined as the area of the region bounded by $m_r = \text{glb}$, $M_r = \text{lub}$ of $\{f(x)|x_{r-1} \le x \le x_r\}$, so $m_r \le f(x) \le M_r \forall x_{r-1} \le x \le x_r$, so the area between x_{r-1}, x_r is between $(x_r x_{r-1})m_r$ and $(x_r x_{r-1})M_r$. To find area between a, b: sum contributions from all such sub-intervals.
- 2. For each patition $P = \{x_0, ..., x_n\} of[a, b]$ def. lower sum $L(f, P) = \sum_{r=1}^n (x_r x_{r-1}) m_r$ and uppoer sum U(f, P): same but M_r . If there is a unique number $L(f, P) \leq \mathbf{A} \leq U(f, P)$ then f is integrable over [a, b] and A is the **definite integral** (area under the graph), denoted by $A = \int_b^a f(x) dx$.
- 3. Properties of definite integrals: Sum rule: $\int_a^b ((f(x)+g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx$ Multiple rule: $\int_a^b \lambda f(x)dx = \lambda \int_a^b f(x)dx$ Transitivity?: $\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$ Get ratioed: $f(x) \leq g(x) \rightarrow \int_a^b f(x)dx \leq \int_a^b g(x)dx$
- 4. First Fundamental Theorem of Calculus $f:[a,b] \to \mathbb{R}$ integrable, $F:[a,b] \to \mathbb{R}$ such that: $F(x) = \int_a^x f(t)dt$. If f continuous at $c \in (a,b)$ then F differentiable at c and F'(c) = f(c)
- 5. Second Fundamental Theorem of Calculus $f:[a,b] \to \mathbb{R}$ continuous, F differentiable with F'=f, then $\int_a^b f(x)dx = F(x)|_a^b = F(b) F(a)$. Alternatively: $\int f(x)dx = F(x) + c$ for constant c.
- 6. DON'T FORGET THE CONSTANT c

Second Order ODEs

- 1. Second order ODE: ay'' + by' + cy = f(x) where a, b, c are constants. When f(x) = 0, then the equation is **Homogeneous**: y = P(x) is a particular solution, y = H(x) is general solution at f(x) = 0, then $\mathbf{y} = \mathbf{H}(\mathbf{x}) + \mathbf{P}(\mathbf{x})$ is general sol. of ay'' + by' + cy = f(x)
- 2. Auxiliary equation has form $a\lambda^2 + b\lambda + c = 0$
 - 1. $\lambda_1 \neq \lambda_2 \in \mathbb{R}$, then $y = Ae^{\lambda_1 x} + Be^{\lambda_2 x}$
 - **2.** $\lambda_1 = \lambda_2 \in \mathbb{R}$, then $y = (A + Bx)e^{\lambda x}$
 - **3.** $\lambda_1, \lambda_2 \in \mathbb{C}$, then $y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$, where $\lambda_1, \lambda_2 = \alpha \pm i\beta$ so $y_1 = e^{\alpha x} \cos \beta x$, $y_2 = e^{\alpha x} \sin \beta x$

Differentiation

- 1. Real function $f:A\to B$ is **differentiable** at $a\in\mathbb{A}$ if $\exists\lim_{x\to a}\frac{f(x)-f(a)}{x-a}\equiv\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$ and differentiable if true for all $a\in A$. Also denoted as: $f'(x)=\frac{d}{dx}f(x)$ in Leibniz notation
- 2. **Theorem**: If f is differentiable at a then f is continuous at a.
- 3. Combination Rules for Derivatives

Sum rule: (f+g)' = f' + g'Multiple rule: $(\lambda f)' = \lambda f'$ Product rule: (fg)' = fg' + f'gQuotient rule: $(\frac{f}{g})' = \frac{f'g - fg'}{g^2}$ Chain rule $(g \circ f)'(x) = g'(f(x))f'(x) \equiv \frac{dy}{dx} = \frac{dy}{dz} \times \frac{dz}{dx}$ They are all differentiable if f, g are. Also, trig rules: $(\sin x)' = \cos x \quad (\cos x)' = -\sin x \quad (\tan x)' = \frac{1}{\cos^2 x}$

- 4. If $\sum (a_n x^n)$ is a **power series** with radius of conv. R, then function $f(x) = \sum_{n=0}^{\infty} a_n x^n$ (-R < x < R), then $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$.
- 5. **Exponential** function can be defined as the sum of a power series: $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \forall x \in \mathbb{R}$. Hence, $\frac{d}{dx} e^x = e^x$
- 6. **Partial Derivative** of a function f(x,y) of independent variables x,y comes from differentiating f(x,y) with respect to one of the variables, while holding the other constant. So, if $f(x,y) = x^2 + 8y$ then $\frac{\partial f(x,y)}{\partial x} = 2x$, and $\frac{\partial f(x,y)}{\partial y} = 8$. Often write $\frac{\partial f}{\partial x} \equiv f_x$
- 7. Turning Points: If $\forall x : f(x) \leq f(a)$ then f has a local maximum at a, and if $\forall x : f(x) \geq f(a)$ a local minimum at a. Both are called turning points of f.
- 8. **Turning Point Theorem**: If a differentiable function f has a turning point at a then f'(a) = 0.
- 9. Point a where f'(a) = 0 is a **stationary point** of f, and it need not be a turning point. If it's not, then it's a **point of inflection**. To locate **maxima, minima**: consider only stationary points and the end points.
- 10. **Rolle's Theorem**: If $f:[a,b] \to \mathbb{R}$ is continuous, differentiable on (a,b) and f(a)=f(b), then $\exists c \in (a,b)|f'(c)=0$. (There has to be a turning point between them if the function returns to the same value)

11. **Mean Value Theorem**: If f cont. on [a, b] and differentiable on (a, b), then $\exists c \in (a, b) | f'(c) = \frac{f(b) - f(a)}{b - a}$. (its gradient is parallel to the line joining a, b)

- 12. If f cont. on [a, b], diff. on (a, b), then:
 - **1.** $f'(x) = 0 \ \forall x \in (a,b) \to f \text{ constant on } [a,b], \text{ or } f'(x) > 0 \to \text{ increasing, } f'(x) < 0 \to \text{ decreasing.}$
 - **2.** Second Derivative Test: Suppose f'(c) = 0, then if f''(c) > 0 then f has a local minimum at c, if f''(c) < 0, then a local maximum.
- 13. Function F is an **indefinite integral** of f if F' = f. Any two indefinite integrals of f can differ only by a constant c = G(x) F(x)
- 14. **L'Hôpital's Rule**: Suppose f(x) = g(x) = 0, then if $\lim_{x\to a} \frac{f(x)}{g(x)}$ exists then so does $\lim_{x\to a} \frac{f'(x)}{g'(x)} = \lim_{x\to a} \frac{f(x)}{g(x)}$, **NOT** $(\frac{f(x)}{g(x)})'$. If L'Hôpital's doesn't work on the first try, do it again with f''(x), g''(x)
- 15. **Implicit functions** of x are defined by an equation relating x and some other variable. Differentiate as normal, when deriving the other variable, use chain rule (insert $\frac{dy}{dx}$). E.g. $x^2 + y^2 = 5$, find f'_x , so $2x + 2y\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x}{y}$
- 16. Function $f: A \to B$ is **Surjective**: $\forall y \in B. \exists x \in A | f(x) = y$, **Injective**: $\forall x, y \in A. f(x) = f(y) \to x = y$ and **Bijective**: $\forall y \in B. \exists ! x \in A | f(x) = y$, or iff it has inverse function $f^{-1}: B \to A$ s.t. $f^{-1}(y) = x \equiv f(x) = y$
- 17. Can make f bijective by considering subsets of domain/subdomain, hence if $f:A\to B$ is inj. and has range C then $f:A\to C$ bij. hence there is inverse $f^{-1}:C\to A$. Continuity of inverse functions: If $f:[a,b]\to \mathbb{R}$ is continuous injective function, then inverse $f^{-1}:C\to [a,b]$ is also cont.
- 18. Differentiation of inverse functions: Let f: $[a,b] \to \mathbb{R}$ a continuous function, if f differentiable on (a,b) and is strictly increasing/decreasing then f has an inverse f^{-1} which is differentiable. If y = f(x) then $(f^{-1})' = \frac{1}{f'(x)} \equiv \frac{dy}{dx} = \frac{1}{dy/dx}$
- 19. Derivatives of inverses of trigonometric f: $\arcsin' = \frac{1}{\sqrt{1-x^2}} \quad \arccos' = \frac{-1}{\sqrt{1-x^2}} \quad \arctan' = \frac{1}{1+x^2}$ write f(x) = y, find derivative $\frac{dx}{dy}$, then find $\frac{dy}{dx}$

Logarithms and Exponents

- 1. Logarithm: $\log x = \int_1^x \frac{1}{t} dt$, which exists since integrand $(\frac{1}{t})$ continuous on interval between $(1,x) \forall x > 0$
- 2. Properties of logarithm:
 - 1. $\log(1) = 0$
 - **2.** Log is strictly increasing: $x < y \rightarrow \log x < \log y$
 - **3.** Log is differentiable $\frac{d}{dx} \log x = \frac{1}{x} \ \forall x > 0$
 - **4.** $\log(xy) = \log(x) + \log(y) \ \forall x, y > 0$
 - **5.** $\log(x/y) = \log x \log y$
 - **6.** Function $\log:(0,\infty)\to\mathbb{R}$ is bijective.
- 3. **Exponential**: Since $\log : (0, \infty) \to \mathbb{R}$ bijective, it has inverse function $\exp : \mathbb{R} \to (0, \infty)$. So $y = \exp(x) \equiv$ $x = \log y \quad (x \in \mathbb{R}, y > 0)$
- 4. Properties of exponents:
 - 1. $\exp(x + y) = \exp(x) \exp(y)$
 - **2.** exp is differentiable $\frac{d}{dx} \exp(x) = \exp(x)$, $\exp(0) = 1$
 - **3.** $\exp(x) = \lim_{n \to \infty} (1 + \frac{x}{n})^n$ **4.** $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
- 5. $\forall x \in \mathbb{R}$ define $e^x = \exp(x)$, then $e^{x+y} = e^x e^y \ \forall x, y \in \mathbb{R}$
- 6. For $a > 0, x \in \mathbb{R}$, $a^x \stackrel{\text{def}}{=} e^{x \log a}$, then $\forall a, b > 0, x, y \in \mathbb{R}$: $\mathbf{1}.(ab)^x = a^x b^x$ $\mathbf{2}.a^x a^y = a^{x+y}$ $\mathbf{3}.(a^x)^y = a^{xy} = (a^y)^x$
- 7. Change of base: $\log_b x = \frac{\log x}{\log b}$ $(b \neq 1)$, hence: $y = \log_b x \equiv \log x = y \log b \equiv x = b^y$

Taylor's theorem

1. Let f be an (n+1)-times differentiable function on an open interval containing points a and x. Then:

$$f(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

for c between a, x.

- 2. $T_n(x) = a_0 + ... + a_n(x-a)^n$ where $a_i = \frac{f(i)(a)}{i!}$ is called the **Taylor polynomial** of degree n of f at a. It's a polynomial which approximates function f in some interval containing a, and the error in approx. is given by remainder term $R_n(x)$.
- 3. Since $\lim_{n\to\infty} R_n(x) = 0$, better approximation, called **Taylor series** for f:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

- 4. When n=0, Taylor's theorem reduces to Mean Value Theorem, which is a consequence of Rolle's theorem.
- 5. When first n-1 derivatives vanish at a, then by Taylor's theorem: $f(x) - f(a) = R_{n-1}(x) = \frac{f^{(n)}(c)}{n!}(x-a)^n$, which helps prove the following statement (6).

- 6. nth derivative test for nature of station. points Suppose f has stationary point at a, and $f'(a) = \cdots =$ $f^{(n-1)}(a) = 0$, but $f^{(n)} \neq 0$, so if $f^{(n)}$ continuous, then
 - **1.** n even, $f^{(n)}(a) > 0$: f has local **minimum** at a.
 - **2.** n even, $f^{(n)}(a) < 0$: f has local **maximum** at a.
 - **3.** n odd: f has point of **inflection** at a.
- 7. Maclaurin Series: Take a=0 in Taylor's theorem results in:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n, \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

with $f^{(0)}(0) = f(0)$, so to find those series, just replace f with your function: $e^x = \frac{1}{0!} + \frac{x}{1!} + \frac{x^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

First Order ODEs

- 1. Ordinary differential equation (ODE) is an equation containing derivatives of a a function of a single variable: y' = 4x y'' + 4y = x etc. **Order** of diff. eq. is that of the highest derivative it contains, so above equations have order of 1 (y') and 2 (y'').
- 2. General solution contains n arbitrary constants, particular solution doesn't contain any. $y' = 4x \Rightarrow$ $\int y'dy = \int 4xdx \Rightarrow y = 2x^2 + c$ (general sol.), y = $2x^2 + 2$ (particular sol.) if y = 4 when x = 1
- 3. Separable Equations is ODE of form: $\frac{dy}{dx} = f(x)g(y) \Rightarrow \frac{1}{g(y)}\frac{dy}{dx} = f(x) \Rightarrow \int \frac{1}{g(y)}dy = \int f(x)dx$, solving which will give a solution. Remember the constant c, can separate $\frac{dy}{dx}$ e.g. $\frac{dy}{dx} = 1 \Rightarrow dy = dx$
- 4. Homogeneous Equations is ODE of form $\frac{dy}{dx}$ = f(y/x). Let $v = y/x \Rightarrow y = xv$, then $\frac{d}{dx}(xv) = f(v) \Rightarrow$ $x\frac{dv}{dx} + v = f(v) \Rightarrow \frac{dv}{dx} = \frac{f(v)-v}{x}$, which is separable. Remember $\frac{d}{dx}(\mathbf{x}\mathbf{v}) = (\mathbf{x}\mathbf{v})' = \mathbf{v} + \mathbf{x}\frac{d\mathbf{v}}{d\mathbf{x}}$ (chain rule).
- 5. Linear Equations is ODE of form $\frac{dy}{dx} + P(x)y = Q(x)$ Take Q(x) = 0, which gives $y = e^{-\int P(x)dx}$, let Integrating factor $I(x) = e^{\int P(x)dx}$ s.t. yI(x) = 1. Differential $\frac{d}{dx}I(x) = I(x)P(x)$. Multiply both sides of original equation by I(x) to get: $yI(x) = \int Q(x)I(x)$ (general solution), or substitute known values to get **particular** solution (get rid of c).