Logic

General Logic

- 1. \neg negation (NOT)
- 2. \wedge conjunction (AND)
- 3. \vee disjunction (OR)
- $4. \oplus \text{exclusive or (XOR)}$
- $5. \in \text{membership}$
- 6. \rightarrow implication
- 7. \equiv or \leftrightarrow equivalence
- 8. \top "top" always returns T
- 9. \perp "bottom" always returns F
- 10. ∃ existential quantifier ("exists")
- 11. ∀ universal quantifier ("forall")

 $A \to B$: A is sufficient for B, B is necessary for A $A \leftrightarrow B$: A/B is necessary and sufficient for B/A

Theorems & Rules

- 1. $A \rightarrow B \equiv \neg B \rightarrow \neg A \equiv \neg A \lor B$
- 2. $A \leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$
- 3. $A \wedge B \equiv \neg(\neg A \vee \neg B)$
- 4. $A \lor B \equiv \neg(\neg A \land \neg B)$

Property	Statement
Associativity	$(x \vee y) \vee z \equiv x \vee (y \vee z)$
	$(x \wedge y) \wedge z \equiv x \wedge (y \wedge z)$
Commutativity	$x \vee y \equiv y \vee x$
	$x \wedge y \equiv y \wedge x$
Identity Laws	$x \vee F \equiv x$
	$x \wedge T \equiv x$
Idempotence	$x \lor x \equiv x$
	$x \wedge x \equiv x$
De Morgan's	$\neg(x \lor y) \equiv \neg x \land \neg y$
Laws	$\neg(x \land y) \equiv \neg x \lor \neg y$
Excluded	$x \vee \neg x \equiv T$
Middle	$x \land \neg x \equiv F$
Doub. Neg.	$\neg \neg x \equiv x$
Annihilation	$x \wedge F \equiv F$
	$x \lor T \equiv T$
Absorption	$x \vee (x \wedge y) \equiv x$
	$x \land (x \lor y) \equiv x$
Distributivity	$x \lor (y \land z) \equiv (x \lor y) \land (x \lor z)$
	$x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$

Predicates

- 1. Predicate is a function producing truth value.
- 2. Proposition is a thing with attached truth value.
- 3. Atomic proposition: F, T, [1+1=2].
- 4. Compound: atomic prop.'s connected by operators.
- 5. Totology is a composition that is always true
- 6. \exists ! there exists exactly 1

Express finite set predicates using (\land) and (\lor)

- 1. $\forall x \in S : P(x) \equiv P(a_1) \wedge ... \wedge P(a_n)$
- 2. $\exists x \in S : P(x) \equiv P(a_1) \vee ... \vee P(a_n)$

De Morgan's laws on predicates

- 3. $\neg \forall x : P(x) \equiv \exists x : \neg P(x)$
- 4. $\neg \exists x : P(x) \equiv \forall x : \neg P(x)$

When Q contains x as a free variable

- 5. $(\forall x : P(x)) \land (\exists x : Q(x)) \equiv \forall x : (P(x) \land Q(x))$
- 6. $(\exists x : P(x)) \lor (\exists x : Q(x)) \equiv \exists x : (P(x) \lor Q(x))$

When Q doesn't contain x as a free variable

- 7. $(\forall x : P(x)) \land Q \equiv \forall x : (P(x) \land Q)$
- 8. $(\exists x : P(x)) \lor Q \equiv \exists x : (P(x) \lor Q)$
- 9. $(\forall x : P(x)) \lor Q \equiv \forall x : (P(x) \lor Q)$
- 10. $(\exists x : P(x)) \land Q \equiv \exists x : (P(x) \land Q)$
- 11. $(\forall x : P(x)) \to Q \equiv \forall x : (P(x) \to Q)$
- 12. $(\exists x : P(x)) \to Q \equiv \exists x : (P(x) \to Q)$
- 13. $Q \to (\forall x : P(x)) \equiv \forall x : (Q \to P(x))$
- 14. $Q \to (\exists x : P(x)) \equiv \exists x : (Q \to P(x))$
- 15. $(\forall x : P(x)) \equiv Q \equiv \forall x : (P(x) \equiv Q)$
- 16. $(\exists x : P(x)) \equiv Q \equiv \exists x : (P(x) \equiv Q)$

Other rules:

- 17. $\neg \forall x. P(x) \equiv \exists x. \neg P(x)$
- 18. $\neg \exists x. P(x) \equiv \forall x. \neg P(x)$

General Set Theory

Set is a maths object with notion of membership.

- 1. $0 \in \mathbb{N}$
- 2. {Elem} singleton
- 3. $\emptyset \equiv \{\}$ empty set
- 4. \subseteq subset or equal
- 5. \subseteq or \subset "proper subset" (not equal)
- 6. $\varnothing \subseteq S = T$ but $\varnothing \subset S = F$ for any set S
- 7. Set builder notation: $\{x \in S | P(x)\}$
- 8. |A| set cardinality(num unique top lvl elems)
- 9. $|\mathbb{N}| = \text{undefined}$
- 10. Can't have a set of all sets
- 11. $\mathcal{P}(S)$ or 2^S Powerset (set of all subsets of S)
- 12. Powerset of finite set is finite, infinite for infinite
- 13. A, B are disjoint sets if $A \cap B = \emptyset$
- 14. \cup union, \cap intersection, \setminus difference, \times Cart. prod.
- 15. Chosen <u>universal</u> set has all "universe" elements
- 16. Set complement: $\overline{A} = S \setminus A$; S is universal set
- 17. If A infinite, $B \neq \emptyset$, then $A \times B$ infinite.
- 18. $S \circ R$ set composition
- 19. $A \triangle B$ symmetric difference
- 20. Equinumerous $A \cong B$ if $f: A \rightarrow B$ bij. so |A| = |B|
- 21. $R_{\cong}: \mathcal{P}(S) \leftrightarrow \mathcal{P}(S)$ is an equivalence relation
- 22. Set A is finite if $\exists n | A \cong \mathbb{N}_n$. This n is unique.
- 23. Infinite set A is countable if $A \cong \mathbb{N}$
- 24. $A(\text{countable})/R_{\sim}$ is either finite or countable.
- 25. \mathbb{Q} is dense $(\forall a, c \in \mathbb{Q} | \exists b \text{ (inf. num.)} \in \mathbb{Q} \text{ s.t. } a < b < c$
- 26. $\mathbb{Q} = Q_1 \cup Q_2 | \forall x \in Q_1, y \in Q_2.x < y$ Dedekind cuts
- 27. $[0,1] \cong \mathbb{R}$ is uncountably infinite.

Axioms and Theorems

- 1. $(A \subseteq B \land B \subseteq A) \rightarrow A = B \ Law \ of \ Extensionality$
- 2. $\exists A = \{x | P(x)\}$ s.t $x \in A$ iff P(x). Law of Abstraction
- 3. $B = \{A | A \notin A\}$ Russel Paradox
- 4. $A \subseteq B \equiv \forall x : x \in A \rightarrow x \in B$ Subset operator
- 5. $A \triangle B = (A \cup B) \setminus (A \cap B)$
- 6. $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$
- 7. $\overline{A \cap B} = \overline{A} \cup \overline{B}$ and $\overline{A \cup B} = \overline{A} \cap \overline{B}$ De Morgan's
- 8. $f: A \to B$ injective then $A \cong B'$ for some $B' \subseteq B$
- 9. For all finite sets A, $\exists n (\text{unique}) \text{ s.t. } A \cong \mathbb{N}_n$
- 10. $\mathbb{N}^+, \mathbb{N}_{\text{even}}, \mathbb{N}^{n \in \mathbb{N}}$ (diagonalisation), \mathbb{Z} are countable.
- 11. $\forall A | A \ncong \mathcal{P}(A)$ (uncount.) Cantor's diagonal argument

Rules and Definitions

- 1. $\{x \in S | T\} = S$
- $2. \{x \in S | F\} = \emptyset$
- 3. $\mathcal{P}(S) = \{A | A \subseteq S\}$
- 4. $|\mathcal{P}(S)| = 2^{|S|}$
- 5. $A \cup B = \{x | x \in A \lor x \in B\}; A \subseteq (A \cup B)$
- 6. $A \cap B = \{x | x \in A \land x \in B\} \subseteq A$
- 7. $A \setminus B = \{x | x \in A \land \neg (x \in B)\} \subseteq A$
- 8. $A \triangle B = \{x | x \in A \oplus x \in B\} = (A \setminus B) \cup (B \setminus A)$
- 9. $A \times B = \{(a, b) | a \in A, b \in B\}$
- 10. $A \times \emptyset = \emptyset \times A = \emptyset$
- 11. $A \times B \times C \neq (A \times B) \times C$
- 12. If $(A \subseteq B) \land (B \subseteq C)$ then $A \subseteq C$
- 13. $A \subseteq B \equiv x \in A \rightarrow x \in B \equiv \neg \exists x \in A.x \notin B$
- 14. $A \subseteq B \land B \subseteq A \rightarrow A = B$
- 15. $\mathbb{N}_n = \{x \in \mathbb{N} | x < n\}, \text{ so } \mathbb{N}_0 = \emptyset, \mathbb{N}_2 = \{0, 1\}$
- 16. $\mathbb{Q} = \mathbb{Z}^2/R_{\sim}$
- 17. $A \times B \neq B \times A$ if $A \neq B$
- 18. $A^2 = A \times A$, $\{a,b\}^2 = \{(a,a), (a,b), (b,a), (b,b)\}$
- 19. $|A \times B| = |A| \cdot |B|$
- 20. $\varnothing \subseteq \mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

$$A \cap S = A$$
; $A \cup \emptyset = A$ Identity

- $A \cap \emptyset = \emptyset$; $A \cup S = S$ Annihilation
- $A \cap \overline{A} = \emptyset$; $A \cup \overline{A} = S$ Excluded middle
- $A = A \cap (A \cup B) = A \cup (A \cap B)$ Absorption
- 1. $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- $2. \ A \times (B \cup C) = (A \times B) \cup (A \times C)$
- 3. $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- 4. $(A \cup B) \times C = (A \times C) \cup (B \times C)$
- 5. $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$
- 6. $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$
- $\bullet \ A_i \stackrel{\mathrm{def}}{=} \{x \in \mathbb{N} | x \le i\} \ \forall i \in \mathbb{Z}$
- $\bullet \bigcup_{i=1}^{n} \stackrel{\text{def}}{=} A_1 \cup \dots \cup A_n \qquad \bigcap_{i=1}^{n} \stackrel{\text{def}}{=} A_1 \cap \dots \cap A_n$
- 1. $S \circ R = \{(x, z) | \exists y . (x, y) \in R \land (y, z) \in S \}$
- 2. $x \in A \setminus B \Rightarrow x \in A \cup B, x \notin A \cap B$
- 3. Reflexive $A \cong A | \mathrm{id}_A : (x \in A) \mapsto x$
- 4. Symmetric $A \cong B \to B \cong A$
- 5. Transitive $A \cong B \land B \cong C \rightarrow A \cong C$

General

- 1. $R_p \subseteq A \times B$ or apb with $a \in A, b \in B$ is a Relation
- 2. For any operator " \sim ": $R_{\sim} = a \sim b$ iff $(a, b) \in R$
- 3. A = B i.e. $A \times A = A^2$, then say "relation on A"
- 4. $R^{-1} = \{(b,a) | (a,b) \in R\} \subseteq B \times A$ Inverse relation
- 5. $R_{\perp} \equiv \varnothing \subseteq A \times B$ Empty relation
- 6. $R_{\top} \equiv A \times B \subseteq A \times B$ Complete relation
- 7. $R_{=A} = \{(a,a) | a \in A\}$ Equality relation
- 8. R_{\parallel} divisibility relation.
- 9. $R_{\equiv n}$ Congruence modulo *n* relation
- 10. R_{\sim} Equivalence relation
- 11. $[a]_R$ is the equivalence class of R_{\sim}
- 12. Classes $[a]_{\equiv_n}$ are called residue classes modulo n
- 13. $(\mathbb{N}, =)$ set of naturals equipped with eq. rel. on \mathbb{N}
- 14. For infinite A, $|A/R_{\sim}|$ may be finite or infinite.
- 15. Equivalence relations define similarity, equality.
- 16. Partial order R_{\leq} is total if $\forall a, b \in A | a \leq b \lor b \leq a$
- 17. c is an upper bound of b if $b \leq c$. Note, $\forall b | b \leq b$
- 18. d is a lower bound of a if $d \leq a$.
- 19. c is an common upper bound of a, b if $a \leq c \land b \leq c$
- 20. d is an common lower bound of a, b if $d \leq a \wedge d \leq b$
- 21. lub least upper bound, glb greatest lower bound
- 22. <u>lattice</u>: $\exists glb, lub$ for every two elements in R_{\leq}
- 23. $R_{\leq A}: a \in A \text{ is } \underline{\text{maximal}} \text{ if } \forall x \in A | (a \leq x) \to (a = x)$
- 24. $R_{\prec_A}: a \in A \text{ is } \underline{\text{minimal}} \text{ if } \forall x \in A | (x \leq a) \to (x = a)$
- 25. $a \in A$ is greatest element if $\forall x \in A : x \leq a$
- 26. $a \in A$ is least element if $\forall x \in A : a \prec x$

Properties

Let $R \subseteq S \times S$. Then we say R is:

- 1. Reflexive $\forall x \in S | (x, x) \in R$, xRx
- 2. Irreflexive $\forall x \in S | (x, x) \in R, \neg xRx$
- 3. Symmetric $\forall a, b \in S | aRb \leftrightarrow bRa$
- 4. Transitive $\forall a, b, c \in S | aRb \wedge bRc \rightarrow aRc$
- 5. Antisymmetric $\forall a, b \in S | aRb \wedge bRa \rightarrow a = b$
- 6. Equivalence relation: Refl(1), Symm(2), Transit(3)
- 7. Partial order: Refl(1), Transit(3), Antisymm(4)

Reflexive: $R_{=} \in R_{p}$, Symmetric: $R_{p-1} \in R_{p}$ Transitive: $R_{p \circ p} \in R_p$, Antisymm: $R_p \cap R_{p-1} \in R_{=}$

Theorems

- 1. Equiv. classes of $R_{\sim A}$ are pairwise disjoint. The union of all equivalence classes is the whole set A.
- 2. Divisibility relation $R_{\parallel}: \mathbb{N} \leftrightarrow \mathbb{N}$ is a partial order.

Rules and Definitions

- 1. $R_{=}^{-1} \equiv R_{=}, R_{\top}^{-1} \equiv R_{\top}, R_{\perp}^{-1} \equiv R_{\perp}$
- 2. $R_{p \circ q} \stackrel{\text{def}}{=} \forall (a, b) \in A \times B | a(p \circ q)b$ 3. $R_{p \circ q} \stackrel{\text{def}}{=} \forall (a, c) \in A \times C | \exists b \in B | (apb) \land (bqc)$
- 4. $[a]_R = \{x \in S | aRx\}$ for $R \subseteq S \times S$
- 5. $[a]_{\sim} = \{x \in A | x \sim a\}, a \text{ is representative of } [a]_{\sim}$
- 6. $A/R_{\sim} = \{[a]_{\sim} | a \in A\}$ Quotient set of A w.r.t. R_{\sim}
- 7. If |A| = n, all $|[a]_{\sim}| = m$, then $|A/R_{\sim}| = \frac{n}{m}$.
- 8. $\min(a, b) \equiv a \sqcap b, \max(a, b) \equiv a \sqcup b$
- 9. $glb_{\subset}(A, B) = A \cap B$, $lub_{\subset}(A, B) = AlubB$

 $c = \mathtt{lub}_{\preceq}(a,b) \equiv (a \preceq c) \land (b \preceq c) \land (\forall x \in A | (a \preceq x) \land (b \preceq x) \rightarrow (c \preceq x))$

 $d = \mathtt{glb}_{\prec}(a,b) \equiv (d \preceq a) \land (d \preceq b) \land (\forall x \in A | (x \preceq a) \land (x \preceq b) \rightarrow (x \preceq d))$

Good to Know

- 1. Antisymmetric isn't opposite of symmetric relation!
- 2. Relation with (a, b), (b, a) for some, but not all $a, b \in A, a \neq b$ is neither Symmetric nor Antisymm.
- 3. $R_{=}$ is both Symmetric, Antisymmetric.
- 4. If $a \sim b$ means the lines a, b are parallel, then all possible directions are equivalence classes.
- 5. R_{\sim} "person a was born on the same day as person b" has 366 equiv. classes. $A/R_{\sim} = \text{set of all birthdays}$.
- 6. $glb_1(a, b) = gcd(a, b), lub_1(a, b) = lcm(a, b)$
- 7. $aRb \neq bRa$
- 8. $R_{|}(\neq 0)$, R_{\subseteq} and R_{\leq} have guaranteed lub, glb
- 9. minimal, maximal elements are "extremes".
- 10. greatest elem is maximal, least is minimal
- 11. maximal elem need not be greatest, minimal-least even if both are unique.
- 12. greatest and least elements are unique.

Functions

General

- 1. There has to be Existence and Uniqueness!
- 1. $f: A \to B \equiv R_f: A \to B \text{ s.t. } \forall a \in A \mid \exists! b \in B.afb$
- 2. $f: A(\text{domain}) \to B(\text{codomain})$. f maps A into B
- 3. $f: A \to A$ is a function on the set A
- 4. $f: A \to B \equiv (a, b) \in R_f \equiv afb \equiv f(a) = b$
- 5. We say that function f maps a to b.
- 6. b = f(a) is the image of a, and a is pre-image of b
- 7. Complete pre-image: $f^{-1}(y) \stackrel{\text{def}}{=} \{x \in X | f(x) = y\}$
- 8. $(f \circ g)(a) = g(f(a))$ CHECK THIS
- 9. Range f(A) of $f: A \to B$ includes all results of f in B
- 10. Bijective $f: A \rightarrow A$ is a "permutation" on set A
- 11. If f(f(A)) = A then f is an "involution" on set A
- 12. A function must have a single output for each input.
- 13. Sign func: sign(x) = 1 if x > 0, 0 if x = 0, -1 else
- 14. $\frac{1}{x}$ isn't a function, because not defined if x=0
- 15. $\pm x$ isn't a func, as it has 2 outputs for each input
- 16. $f: A \to B$ a function "from" $A \to B$
- 17. Function = map = mapping = \mapsto
- 18. For $f: A \to B$: $f|_H \stackrel{\text{def}}{=} f \cap ((H \subseteq A) \times B)$

Theorems

- 1. $f: A \to B, g: B \to C \Rightarrow R_{f \circ g}$ is function $A \to C$
- 2. $f: A \to B$ bijective iff f^{-1} is also bijective function

Rules and Definitions

- 1. Identity function: $id_A: A \to A | \forall a \in A.id_A(a) = a$
- 2. Restriction of f on H: $f|_H = \{(a, f(a)) | a \in H\}$ so $f: A \to B$ becomes $f: (H \subseteq A) \to B$.
- 3. Infinite sequence $(a_0, a_1...)$ where $\forall i \in \mathbb{N} : a_i \in A$ is a function $a : \mathbb{N} \to A$
- 4. Function f(A) = B is surjective. Maps A onto B. Denoted as $f: A \rightarrow B$.
- 5. $\forall x, y \in A : (f(x) = f(y)) \to (x = y)$ is injective. Maps A to B one-to-one. Denoted as $f: A \to B$
- 6. $f: A \to B$ is <u>bijective</u> if surjective and injective. One-to-one correspondence between $A, B: A \rightarrowtail B$ Has unique pre-image: $\forall b \in B: \exists! a \in A: f(a) = b$
- 7. Indicator function on $A \in \mathcal{P}(S) : \chi_A : S \to \mathbb{B}$ $\forall x \in S : \chi_A(x) = T \text{ if } x \in A, F \text{ if } x \notin A.$
- 8. Mapping $\chi : A \mapsto \chi_A$ produces a bijection between $\mathcal{B}(S) = \{f | f : S \to \mathbb{B}\}$
- 9. $f|_H: H \to B$ is undefined on all inputs not in H.
- 10. $f: A \to B$ then $R_{f^{-1}}: B \leftrightarrow A$ need not be a function

General

- 1. V: Vertices(Nodes), E: Edges(Pairs of Nodes)
- 2. Pairs of nodes comprising relation E are called *edges*
- 3. Two nodes connected by an edge are called adjacent
- 4. G = (V, E): Graph with sets of nodes V and edges E
- 5. Graph (G) "on" V is an Irreflexive, symmetric relation defined by $E = R_{\rightharpoonup} : V \leftrightarrow V$ (V is any finite set)
- 6. Empty graph has no edges: (V, \emptyset)
- 7. Complete graph K(n) contains all possible edges: K(V) = (V, E), where $E = \{(u, v) \in V^2 | u \neq v\}$
- 8. Graph G is bipartite or two-coloured if set of nodes can be partitioned into 2 disjoint subsets $V = V_1 \cup V_2$ s.t. every edge in E connects 2 nodes from diff. subsets V_1, V_2 are colour classes
- 9. K(n) can be read as: 'Any graph isomorphic to $K(\mathbb{N}_n)$ '
- 10. $K(V_1,V_2)=(V_1\cup V_2,(V_1\times V_2)\cup (V_2\times V_1))$ is called a complete bipartite graph. $K(m\in\mathbb{N},n\in\mathbb{N})$ any graph isomorphic to K(H,W) with m houses, n wells
- 11. A graph with k colour classes is called k-partite
- 12. Complete graph has $\frac{n(n-1)}{2}$ edges.
- 13. Connected graph stays conn. when adding edges
- 14. Acyclic graph stays acyclic when removing edges
- 15. Trees are maximal among acyclic graphs
- 1. Eulerian cycle visits each edge only once.
- 2. Hamiltonian cycle visits each node only once.
- 3. $V \neq \emptyset$, |V| finite.
- 4. Directed graph: ordered pairs: $e = (v, w) \in E$
- 5. Undirected: unordered $e = \{v, w\} \in E$
- 6. Self-loops: e = (v, v)
- 7. A graph is *simple* if no loops and multiple edges.
- 8. edges(e)=v(source) $w(\text{destination in dir.})G \in E$
- 9. Multiplicity: number of edges between 2 nodes.
- 10. Adjacent nodes: Nodes, connected by an edge.
- 11 7 17 1 1 1 1 1 1
- 11. Incident nodes: Nodes that an edge connects.
- 12. Self-loops count twice in Vertex degree
- 13. in-deg $(v) \stackrel{\text{def}}{=}$ num. edges where v is destination.
- 14. out- $\deg(v) \stackrel{\text{def}}{=} \text{num.}$ edges where v is source.
- 15. $v \to w : vw \in E$
- 16. $v \to^* w : \exists v \hookrightarrow w \text{ or } w \text{ is reachable from } v.$
- 17. Graph G is Eulerian if it has an Eulerian cycle.
- 18. G' is a subgraph of $G(G' \subseteq G)$ if $V' \subseteq V, E' \subseteq E$
- 19. G' spanning subgraph of $G(G' \subseteq G)$ if $V' = V, E' \subseteq E$
- 20. $R_{\subset}, R_{\sqsubset}: \mathcal{G}(V) \leftrightarrow \mathcal{G}(V)$ are part. orders on $\mathcal{G}(V)$
- 21. Tree: connected, acyclic graph.
- 22. Forest: acyclic graph (not necessarily connected)
- 23. If deg(v) = 1 in a tree, then v is a leaf

Graph Connectivity

- 1. Walk (of len. k) is a sequence (u, u_1, u_{k-1}, v) s.t. every two consecutive nodes in the sequence are connected by an edge: $(u \rightharpoonup u_1) \land ... \land (u_{k-1} \rightharpoonup v)$
- 2. $u \hookrightarrow v$ "nodes u and v are connected by a walk"
- 3. **Tour** is a walk that returns to the starting node
- 4. Nodes u, v in a graph are connected, if $\exists u \hookrightarrow v$.
- 5. A graph is connected if all (u, v) are connected.
- 6. Connectivity is equivalence relation on the set of all nodes in a graph: $R_{\uparrow \downarrow}: V \leftrightarrow V$
- 7. Equivalence classes of R_{\ominus} are "connected components" of graph G. A graph is connected iff it has only 1 connected component.
- 8. A walk where all E are distinct is a **Path**: $u \rightsquigarrow v$ $u = u_0 \rightharpoonup ... \rightharpoonup u_k \rightharpoonup v \ \forall i, j \in \mathbb{N}_{k+1} | u_i \neq u_j$
- 9. Cycle is a tour with no edges repeated.
- 10. A graph without cycles is called acyclic
- 11. $R_{\leadsto}: V \leftrightarrow V$ is equivalence relation
- 12. $\deg(v) = |\{u \in V | v \rightharpoonup u\}|$ (num adjacent nodes)
- 13. Simple Path is a walk that repeats no vertices.
- 14. Simple Cycle is tour with no vertices repeated except $v_0 = v_n$
- 15. A graph is planar, if can be embedded in the plane
- s.t. the lines representing different edges do not cross.
- 16. Usually want to identify graphs which are "the same up to a renaming of nodes"
- 17. Graphs $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$ are isomorphic if bijective func. $f: V_1 \leftrightarrow V_2$, preserving edges exists: $\forall u, v \in V_1 | (u, v) \in E_1 \equiv (f(u), f(v)) \in E_2$, where bijective f is an isomorphism between G_1 and G_2
- 18. Subdivision of graph G is obtained by removing edge (u, v), (v, u) from G, and then adding to G new node $x \notin V$, and new edges (u, x), (x, v), (x, u), (v, x)

Theorems

- 1. $\forall u, v \in V | \exists u \leadsto v \text{ iff } \exists u \hookrightarrow v$
- 2. G has Euler tour iff: G connected, $\forall v \in V : |v|$ even (Euler, Hierholzer)
- 3. $\sum_{v \in V} \deg(v) = 2 \cdot |E|$ Handshaking Lemma
- 4. Let G = (V, E) be a tree. Then |V| = |E| + 1
- 5. Every tree with at least one edge has a leaf.
- 6. Partial order R_{\sqsubseteq} on set of all asyclic graphs on finite set V. Graph G = (V, E) is maximal iff it's a tree.
- 7. Graph is planar iff it has no subgraph isomorphic to a graph obtained from K(5) or K(3,3) by a sequence of subdivisions.

Proofs

General

Direct proof, Induction, Contradiction, Exhaustion, Contra positive, Disproof by Counterexample.

WLOG: without loss of generality: presenting specific proof that can be scaled to any example.

FTSOC: for the sake of contradiction

LHS, RHS: left and right hand sides

Induction

- a. Base Case: non self-referential initial statement
- b. Inductive step (self-referential def.) i.e. 5 = next(4)
- c. Completeness statement (domain restriction) $\,$

For example: $3 = \operatorname{next}_b(\operatorname{next}_b(\operatorname{next}_b(0_a)) \in \mathbb{N}_c$

1. Assumption from inductive step is inductive hypothesis

Theorems

1) Suppose n is an integer larger than 1 and n is not prime. Then 2n1 is not prime.

Proofs continued

- 1) \therefore \Rightarrow "therefore"
- $2) :: , \Leftarrow "because"$
- 3) \Leftrightarrow "which is the same as"
- 4) \square End of proof, \bot Contradiction
- 1. Begin each sentence with a word, not a symbol.
- 2. End each sentence with a period.
- 3. Separate maths symbols & expressions with words.
- 4. Don't replace words with symbols.
- 5. Avoid using unnecessary symbols.
- 6. Use "we", "us" instead of "I", "you", "me".
- 7. Use active voice: "dividing RHS by n we get x=3.
- 8. Explain each new symbol.
- 9. Don't replace words with "it".